Apuntes 2º Bachillerato C.T.

Slides:



Advertisements
Presentaciones similares
Apuntes 2º Bachillerato C.T.
Advertisements

Apuntes 2º Bachillerato C.T.
Apuntes 1º Bachillerato CT
DISCUSIÓN DE SISTEMAS POR GAUSS-JORDAN
DETERMINANTES.
Apuntes 2º Bachillerato C.T.
Apuntes 2º Bachillerato C.T.
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
VALOR DE UN DETERMINANTE ( y II )
MATRIZ INVERSA POR DETERMINANTES
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 TRABAJO CON PARÁMETROS EN SISTEMAS TEMA 5.4 * 2º BCT.
Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
PROPIEDADES DE LOS DETERMINANTES
Apuntes 2º Bachillerato C.T.
MATRIZ INVERSA POR DETERMINANTES
VALOR DE UN DETERMINANTE
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema IV Discusión de sistemas.
OPERACIONES CON ÁNGULOS
DETERMINANTES Autora: Mª Soledad Vega Fernández
RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES MEDIANTE DETERMINANTES TEMA 3 Un determinante de una matriz cuadrada es un número real que se obtiene operando.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II TEMA 1 Sistemas de ecuaciones lineales.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 EJERCICIOS TEMA 1.7 * 2º BCT.
Tema III Determinantes
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema IV Discusión de sistemas.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 VALOR DE UN DETERMINANTE ( y II ) Bloque I * Tema 031.
Apuntes 1º Bachillerato CT
Tema IV Discusión de sistemas
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 Bloque I * Tema 028 Determinantes.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II TEMA 1 Sistemas de ecuaciones lineales.
DESCOMPOSICION FACTORIAL
Tema III Determinantes
Multiplicación de matrices
@ Angel Prieto BenitoApuntes Matemáticas 2º ESO1 TEMA 9.1 Función lineal o de proporcionalidad directa.
Tema III Determinantes
@ Angel Prieto BenitoApuntes Matemáticas 2º ESO1 Tema 7.2 Resolución por Tablas.
Apuntes 2º Bachillerato C.S.
Tema X Límites de funciones
OPERACIONES COMBINADAS
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema VII Derivadas.
Apuntes 2º Bachillerato C.T.
Apuntes 2º Bachillerato C.S.
BASES DE UN ESPACIO VECTORIAL
TEMA 4.2 ORDEN EN NÚMEROS ENTEROS
Tema I Sistemas de ecuaciones
Apuntes de Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema II Matrices.
TEMA 5.6 * 1º ESO SIMPLIFICACIÓN DE FRACCIONES
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 SISTEMAS DE ECUACIONES Tema 6 * 3º ESO.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema II Matrices.
PROPIEDADES DE LOS DETERMINANTES
ALGUNAS PROPIEDADES DE LAS RAÍCES
TEMA 1 Sistemas de ecuaciones lineales
Apuntes 1º Bachillerato CT
@ Angel Prieto BenitoApuntes Matemáticas 2º ESO1 TEMA 5.5 Producto de Polinomios.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 OTRAS GRÁFICAS TEMA 13.7a * 2º BCT.
Apuntes de Matemáticas 2º ESO
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema III Determinantes.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 CÁLCULO DE LÍMITES TEMA 10.3 * 2º BCT.
Apuntes de Matemáticas 1º ESO
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 U.D. 9 * 1º BCT DERIVADAS Y GRÁFICAS.
@ Angel Prieto BenitoMatemáticas 2º Bach. C.T.1 DETERMINANTES U.D. 2 * 2º BCT.
@ Angel Prieto BenitoMatemáticas 2º Bach. C.T.1 MATRICES U.D. 1 * 2º BCT.
@ Angel Prieto BenitoMatemáticas 2º Bach. C.T.1 RECTAS Y PLANOS EN EL ESPACIO U.D. 10 * 2º BCT.
@ Angel Prieto BenitoMatemáticas 2º Bach. C.T.1 RECTAS Y PLANOS EN EL ESPACIO U.D. 10 * 2º BCT.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATRICES U.D. 2 * 2º BCS.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.11 DERIVADAS U.D. 7 * 2º BCS.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 DETERMINANTES U.D. 3 * 2º BCS.
@ Angel Prieto BenitoMatemáticas 2º Bach. C.T.1 DISCUSIÓN Y RESOLUCIÓN DE SISTEMAS U.D. 3 * 2º BCT.
DETERMINANTES U.D. 2 * 2º Angel Prieto Benito
Transcripción de la presentación:

Apuntes 2º Bachillerato C.T. RANGO DE UNA MATRIZ TEMA 4.6 * 2º BCT @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

Apuntes 2º Bachillerato C.T. RANGO DE UNA MATRIZ RANGO DE UNA MATRIZ Es el orden del determinante de mayor orden de valor no nulo de dicha matriz. Ejemplo 1 Sea la matriz A = El rango de A no puede ser 4, puesto que no es una matriz cuadrada y el mayor determinante es de orden 3 Veamos si es de rango 3: Todos los determinantes que tomemos tendrán 2 columnas iguales, por lo que su valor es 0. El rango de A no puede ser 3  Rang (A) ≤ 2 Veamos si el rango es 2: 1 1 1 0 = 1 – 0 = 1 <> 0  Rango (A) = 2 @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

Apuntes 2º Bachillerato C.T. RANGO DE UNA MATRIZ RANGO DE UNA MATRIZ Es el orden del determinante de mayor orden de valor no nulo de dicha matriz. Ejemplo 2 Sea la matriz A = Vemos que hay al menos un elemento ( a11 = 1) que es distinto de 0, luego el RANGO de A es, al menos, igual a 1  Rang (A) ≥ 1 Vemos que hay, al menos, un determinante de orden dos no nulo: 1 0 0 1 = 1.1 - 0.0 = 1 <> 0 Luego el Rango de A es, al menos, igual a 2  Rang (A) ≥ 2 @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

Apuntes 2º Bachillerato C.T. … Ejemplo 2 Veamos si existe algún determinante de orden 3 no nulo: 1 0 2 1 0 2 0 1 1 = 3-2-1=0; 0 1 1 = – 1 <> 0 1 1 3 0 1 0 Luego el Rango de A es, al menos, igual a 3  Rang (A) ≥ 3. Y por último sólo nos queda ver si el Rango de A es 4: Desarrollamos por adjuntos de la primera fila: 1 1 0 0 1 0 0 1 1 =1 . 1 3 3 - 0 . A12 + 2. 1 1 3 - 3 . 1 1 3 = 1 0 1 0 1 1 0 1 0 = 1.(3+3-1) – 0 + 2. (-1) – 3 (1) = 5 – 2 – 3 = 0 Luego podemos afirmar que el Rango de la matriz A no vale 4 , al ser de valor nulo el único determinante de orden 4 que existe  Rang (A) = 3. Conclusión: Una fila o columna es combinación lineal de otra/s. @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

Apuntes 2º Bachillerato C.T. RANGO DE UNA MATRIZ RANGO DE UNA MATRIZ Es el orden del determinante de mayor orden de valor no nulo de dicha matriz. Ejemplo 3 Sea la matriz A = Vemos que hay al menos un elemento ( a11 = 1) que es distinto de 0, luego el RANGO de A es, al menos, igual a 1  Rang (A) ≥ 1 Vemos que hay, al menos, un determinante de orden dos no nulo: 1 0 0 1 = 1.1 - 0.0 = 1 <> 0 Luego el Rango de A es, al menos, igual a 2  Rang (A) ≥ 2 @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.

Apuntes 2º Bachillerato C.T. … Ejemplo 3 Veamos si existe algún determinante de orden 3 no nulo: 1 0 2 0 1 1 = 1 +0+0 – 2 – 1 -0 = - 2 <> 0 1 1 1 Luego el Rango de A es, al menos, igual a 3  Rang (A) ≥ 3. Y por último sólo nos queda ver si el Rango de A es 4: Desarrollamos por adjuntos de la primera fila: =1 . - 0 . + 2. - 3 . = 1.(2+1+0-0-2-1) – 0. (0+1+0-0-0-2) + 2. (0+1+0-0-0-2) – 3 (0+1+1-1-1-0) = = 1.0 – 0.(-1) + 2. (-1) – 3.0 = 0 – 0 – 2 – 0 = -2 <> 0 Luego podemos afirmar que el Rango de la matriz A vale 4 , al ser de valor no nulo el único determinante de orden 4 que existe  Rang (A) = 4. Nota: Podíamos haber comenzado por estudiar si el Rango era 4, luego si era 3, luego si era 2 y por último si era 1. El orden es lo de menos. @ Angel Prieto Benito Apuntes 2º Bachillerato C.T.