1 Números Índice del libro Los números reales

Slides:



Advertisements
Presentaciones similares
LOGARITMOS.
Advertisements

Año 2009 MATEMATICA Todo lo visto en 2º Año … Autoras: Abba - Romero.
MATEMÁTICAS 8vo Básico PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC
MATEMÁTICAS I MEDIO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC
2.1 – Expresiones algebraicas
POTENCIACIÓN Y RADICACIÓN ESTUDIANTE: Javier Chávez Flores
POTENCIAS, RAICES, FRACCIONES Y DECIMALES
TEMA 1. NÚMEROS NATURALES
Simplificaci ó n de radicales Si existe un n ú mero natural que divida al í ndice y al exponente (o los exponentes) del radicando, se obtiene un radical.
Los números reales R Q Z N.
EXPONENTES Y RADICALES
0,345 LOS NUMEROS DECIMALES 35,21 Números decimales
TEMA Nº 1 Conjuntos numéricos.
Unidad 1 números naturales, enteros y fraccionarios
ECUACIONES LINEALES DEFINICIÓN
Andy Jiménez Yenny Ramírez Candelario Araujo Camila Rivera
1.1 – Clasificación de los números reales
NÚMEROS DECIMALES 1º ESO.
FRACCIONES Una fracción es una expresión en la que a y b son números enteros llamados numerador, a, y denominador, b. Ejemplo: Tomamos 3 partes.
NÚMEROS REALES7 ÁMBITO CIENTÍFICO TECNOLÓGICO.
Los Números Racionales
Radicales Preparado por Profa.Carmen Batiz UGHS
Numeración Decimal..
Operatoria en Q Gonzalo Maureira León..
TEMA 3.9 EXPRESIÓN DECIMAL
SUBCONJUNTOS DE LOS NÚMEROS CARDINALES
Los números naturales NUMEROS NATURALES.-
NÚMEROS RACIONALES Día 01 * 1º BAD CS
Números decimales 1. Representación y ordenación
1.1 – Clasificación de los números reales
Curso de: Matemáticas de Apoyo
LOS NUMEROS NATURALES Los números naturales son el conjunto de los números enteros positivos, y como positivo todo número que se ubica a la derecha del.
LOGARITMOS.
LOGARITMOS.
POTENCIAS Y RAICES.
Matemáticas 1 NOMBRE DEL ALUMNO: Arturo Morales Texon
II Unidad: Lenguaje Algebraico
TEMA 2: POTENCIAS DE BASE ENTERA
ARITMETICA.
TEMA 2: POTENCIAS Y RAÍCES 3º eso Colegio Divina Pastora (Toledo)
NÚMEROS REALES.
LOGARITMOS.
Ejercicio: π 4 Los Números Enteros …… 5 Valor Absoluto de un Número |-5 | = |+7| = | 0 | = |-15| = | 42 | = “El valor absoluto de un número,
NÚMEROS ENTEROS Y DECIMALES
POTENCIACION ALGEBRAICA
1 Números reales Índice del libro Números naturales y enteros
CONJUNTOS NUMÉRICOS. 1.Números Naturales 1.1 Consecutividad numérica 1.2 Paridad e imparidad 1.3 Números primos 1.4 Múltiplos y divisores 1.5 Mínimo Común.
ECUACIONES DE PRIMER Y SEGUNDO GRADO.
Matechef Esther Sánchez Alejandro Paredes Krishna Peña Alhelí Almendras.
Recuerda. Fracciones equivalentes
- Brocheta de fracciones - Fracciones generatrices a la parrilla - Intervalos al horno - Tarta de potencias (castillo de potencias) - Croquetas rellenas.
Operaciones con números enteros Z
FUNCIONES POTENCIAS, EXPONENCIALES Y LOGARÍTMICAS. 4º Medio 2013.
1 Índice del libro Conjuntos numéricos 1.Números naturalesNúmeros naturales 2.Números enterosNúmeros enteros 3.Números racionalesNúmeros.
YULY PAOLA GÓMEZ PARRA *NÚMEROS NATURALES *NÚMEROS ENTEROS.
Los números 1.El sistema de numeración decimal y los números naturalesEl sistema de numeración decimal y los números naturales 2.Los números enteros. Operaciones.
MATECHEF - Trabajo realizado por… Andrea Largo Cristina Moretón Sandra San Frutos.
Potenciación La potenciación o exponenciación es una multiplicación de varios factores iguales, al igual que la multiplicación es una suma de varios.
Tema: 4 Los números enteros 1Matemáticas 1º Los números enteros Buena temperatura: + 20 ºC IMAGEN FINAL –7 – El submarino navega a.
INTRODUCCIÓN AL ALGEBRA CONJUNTOS NUMÉRICOS. LOS NUMEROS RACIONALES ( ℚ )
NUMEROS REALES AREA: MATEMATICAS DOCENTE: ANGEL PALACIO LICENCIADO EN MATEMATICAS U DE A.
Los números naturales y los números enteros 1.Sistemas de numeración a través de la historia: de Roma a nuestros díasSistemas de numeración a través de.
1 Índice del libro Conjuntos numéricos: N, Z y Q 1.Introducción a N, Z y QIntroducción a N, Z y Q 2.Tipos de fraccionesTipos de fracciones.
FUNDAMENTOS DE MATEMATICAS Una expresión algebraica es una expresión en la que se relacionan valores indeterminados con constantes y cifras, todas ellas.
Números enteros 1.Los números naturalesLos números naturales 2.Los números enterosLos números enteros 3.Operaciones con números enterosOperaciones con.
Números y Fracciones 1.Los números naturales y los enterosLos números naturales y los enteros 2.Números primosNúmeros primos 3.Máximo común divisor y mínimo.
23/06/ Indice 1. Términos de un fracción 2. Equivalencia de fracciones 3. Ampliación y simplificación de fracciones 4. Fracciones con el numerador.
1 Los números reales Los números racionales Los números irracionales
LOS NÚMEROS ¿Existe algún número que multiplicado por 2 sea 1? ENTEROS
1 Números Índice del libro Los números reales
Transcripción de la presentación:

1 Números Índice del libro Los números reales Operaciones con números enteros y racionales Números decimales Potencias de exponente entero Radicales Notación científica y unidades de medida Errores Índice del libro

Números 1. Los números reales Desde los Números naturales hasta los números reales

Números 2. Operaciones con números enteros y racionales 1 Números 2. Operaciones con números enteros y racionales Suma Y RESTA DE números enteros Para sumar dos números enteros del mismo signo, se suma el valor absoluto de dichos números y se añade al resultado el signo de los sumandos. EJEMPLO Para sumar dos números enteros de distinto signo, se restan sus valores absolutos (el mayor menos el menor) y se añade al resultado el signo del número de mayor valor absoluto. Para restar dos números enteros solo tienes que sumar al primero el opuesto del segundo. Para obtener el opuesto de un número entero simplemente debes cambiarle el signo.

Números 2. Operaciones con números enteros y racionales 1 Números 2. Operaciones con números enteros y racionales multipliCAcIÓN Y diviSIÓN DE números enteros Para multiplicar o dividir dos números enteros, basta con que multipliques o dividas el valor absoluto de los números y añadas al resultado el signo en función de las reglas de los signos. Reglas de los signos para la multiplicación Reglas de los signos para la división Positivo ⋅ Positivo = Positivo Positivo : Positivo = Positivo Positivo ⋅ Negativo = Negativo Positivo : Negativo = Negativo Negativo ⋅ Positivo = Negativo Negativo : Positivo = Negativo Negativo ⋅ Negativo = Positivo Negativo : Negativo = Positivo

Números 2. Operaciones con números enteros y racionales 1 Números 2. Operaciones con números enteros y racionales Suma Y RESTA DE fracciones Para sumar y restar fracciones debes conseguir que todas las fracciones tengan el mismo denominador. Para ello buscarás la fracción equivalente a cada una de ellas que tenga como denominador el mínimo común múltiplo de todos los denominadores. EJEMPLO El producto de dos fracciones es otra fracción cuyo numerador y denominador son el producto de los numeradores y denominadores de dichas fracciones respectivamente. Para realizar el cociente de dos fracciones debes multiplicar la primera por la inversa de la segunda. Para obtener la inversa basta con cambiar el numerador por el denominador, y viceversa.

Números 3. Números decimales 1 Números 3. Números decimales Clasificación de los números decimales Números decimales exactos Son los que tienen un número finito de cifras decimales. EJEMPLO Números decimales periódicos puros Su parte decimal está formada por un grupo de cifras que se repite de forma indefinida. A este grupo de cifras se le llama periodo. Números decimales periódicos mixtos Su parte decimal está formada por un grupo de cifras que no se repite y otro que sí. El que se repite se llama periodo y el que no se repite anteperiodo. Números irracionales Son los que tienen infinitas cifras decimales pero estas no siguen una pauta determinada, es decir, no hay un periodo que se repita indefinidamente.

Números 3. Números decimales 1 Números 3. Números decimales Suma, RESTA y Multiplicación DE números decimales Suma y resta de números decimales Se resuelven de la misma forma que con números enteros teniendo cuidado de alinear las comas de ambos números. EJEMPLO Multiplicación de números decimales Multiplicamos sin tener en cuenta las comas y se añade la coma al resultado para que tenga tantas cifras decimales como los factores en conjunto.

Números 3. Números decimales 1 Números 3. Números decimales División DE números decimales División de números decimales Repasamos la división de números decimales. EJEMPLO Dividir 350,62 : 12,8 Eliminamos la coma del divisor: Colocamos la coma en el cociente cuando «bajamos» la primera cifra decimal del dividendo: Continuamos dividiendo:

Números 3. Números decimales 1 Números 3. Números decimales Fracción generatriz Fracción generatriz de un decimal exacto En el numerador se escribe el número decimal sin coma y en el denominador, la unidad seguida de tantos ceros como cifras decimales tenga. EJEMPLO Fracción generatriz de un decimal periódico puro En el numerador se escribe el número sin coma hasta el final del periodo y se le resta la parte entera, en el denominador se ponen tantos nueves como cifras tenga el periodo. Fracción generatriz de un decimal periódico mixto En el numerador se escribe el número sin coma hasta el final del periodo y se le resta la parte entera y el anteperiodo; en el denominador se ponen tantos nueves como cifras tenga el periodo y tantos ceros como cifras tenga el anteperiodo.

Números 3. Números decimales 1 Números 3. Números decimales Redondeo Se denomina redondeo a eliminar las cifras decimales a partir de una señalada. Si la primera cifra que eliminamos es 5 o mayor, sumamos 1 a la última cifra que se escribe. Si la cifra es menor que 5, la última cifra que se escribe permanece igual. EJEMPLO Redondeamos a las centésimas

Números 4. Potencias de exponente entero 1 Números 4. Potencias de exponente entero Potencias de exponente entero

radical de índice n, o raíz n-ésima 1 Números 5. Radicales radical de índice n, o raíz n-ésima Se denomina radical de índice n de un número a, o raíz n-ésima de un número a, al número que elevado a n nos da a. De esta forma, diremos que b es la raíz n-ésima de a siempre que bn = a EJEMPLO Resolver Descomponemos el radicando en factores primos: Como es una raíz cúbica, intentamos agrupar los factores en tres grupos iguales:

Producto y división de radicales 1 Números 5. Radicales Producto y división de radicales A la hora de operar con radicales resultan muy útiles las siguientes expresiones que nos permiten convertir cualquier radical en una potencia de índice fraccionario: EJEMPLO Resolver Expresamos los radicales como potencias de exponente fraccionario: Resolvemos aplicando las propiedades de las potencias:

Extracción de factores de un radical 1 Números 5. Radicales Extracción de factores de un radical Utilizando la expresión que convierte los radicales en potencias, podemos simplificar determinadas expresiones extrayendo factores de una raíz. Cada vez que tengamos n factores iguales dentro de una raíz n-ésima podemos sacar estos factores como uno solo que multiplica la raíz. EJEMPLO Resolver Descomponemos el radicando en factores primos: Como se trata de una raíz cuadrada, cada pareja de factores se convierte en un factor fuera de la raíz:

Suma y resta de radicales 1 Números 5. Radicales Suma y resta de radicales Solo podemos sumar radicales si al extraer factores de ellos resultan ser el mismo radical multiplicado por distintos números. Si esto no es así y los radicales son distintos, lo único que podemos hacer es dejar la operación indicada. EJEMPLO Resolver Descomponemos todos los radicandos en factores primos: Extraemos todos los factores que sea posible en cada radical: Sumamos y restamos los radicales que sean iguales:

Números 6. Notación científica y unidades de medida 1 Números 6. Notación científica y unidades de medida Potencias de base 10 Y EXPONENTE ENTERO

Números 6. Notación científica y unidades de medida 1 Números 6. Notación científica y unidades de medida Notación científica Un número está expresado en notación científica cuando está escrito de la siguiente forma: EJEMPLO Masa de un protón mprotón = 0,00000000000000000000000000167 kg = 1,67 ⋅ 10–27 kg Distancia de la Tierra al Sol d = 150 000 000 km = 1,5 ⋅ 108 km

Números 6. Notación científica y unidades de medida 1 Números 6. Notación científica y unidades de medida Unidades de medida 1 de 3 Una unidad de medida es un valor de una determinada magnitud que se establece como patrón. Para medir dicha magnitud comparamos lo que medimos con la unidad de medida y determinamos cuántas veces la contiene. Cada unidad de medida tiene un símbolo asociado. Para cada unidad de medida podemos definir múltiplos y submúltiplos.

Números 6. Notación científica y unidades de medida 1 Números 6. Notación científica y unidades de medida Unidades de medida 2 de 3 Algunas unidades de medida de magnitudes de físicas

Números 6. Notación científica y unidades de medida 1 Números 6. Notación científica y unidades de medida Unidades de medida 3 de 3 Algunas unidades de medida múltiplos y submúltiplos

1 Números 7. Errores Error absoluto Consiste simplemente en comparar, mediante una resta, el valor que hemos obtenido con uno de referencia que consideramos exacto o verdadero. Habitualmente este valor de referencia es la media de las mediciones que hayamos hecho. Al medir en diferentes ocasiones una magnitud obtenemos distintos valores. Podemos considerar que la media de esos valores es el valor exacto de nuestra medición. Lo denominamos VE La diferencia entre cada medida y este valor exacto es el error absoluto de cada medida. Si realizamos la media de todos esos errores absolutos tenemos el promedio del error absoluto. Se denomina EA El resultado de un experimento se escribe como: VE ± EA

Error relativo y porcentaje de error 1 Números 7. Errores Error relativo y porcentaje de error Para decidir si un error es importante o no, utilizamos el error relativo. Se denomina ER y se calcula dividiendo el error absoluto EA entre el valor considerado exacto de nuestra medición VE Si lo multiplicamos por 100, obtenemos el porcentaje de error