La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 FUNCIONES, LÍMITES Y CONTINUIDAD Tema 8.

Presentaciones similares


Presentación del tema: "@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 FUNCIONES, LÍMITES Y CONTINUIDAD Tema 8."— Transcripción de la presentación:

1 @ Angel Prieto BenitoApuntes 1º Bachillerato CT1 FUNCIONES, LÍMITES Y CONTINUIDAD Tema 8

2 @ Angel Prieto BenitoApuntes 1º Bachillerato CT2 CONCEPTO DE FUNCIÓN Tema 8.1 * 1º BCT

3 @ Angel Prieto BenitoApuntes 1º Bachillerato CT3 Definición de función Una función es toda correspondencia entre dos magnitudes de modo que a cada valor de la primera (x) le corresponde un único valor de la segunda (y). A las magnitudes que intervienen en dicha correspondencia se las llama variables. Variable independiente (x): Su valor se fija previamente. Variable dependiente (y): Su valor depende del que se fije para la variable independiente. Al conjunto de valores de la variable independiente (x) se le llama DOMINIO de la función. Al conjunto de valores de la variable dependiente (y) se le llama IMAGEN o RECORRIDO de la función. Una función se suele denotar de la siguiente manera: y=f(x)

4 @ Angel Prieto BenitoApuntes 1º Bachillerato CT4 Ejemplo de Función DOMINIORECORRIDO X f (x)=x 2 Y

5 @ Angel Prieto BenitoApuntes 1º Bachillerato CT5 DOMINIO DE F(X) Ejemplo 1: Sea la función y = x Para que y pueda tomar valores reales ( números reales), está claro que x debe ser mayor o igual que 0. El dominio de esta función es pues x 0 Dom f(x) = [0, +oo ) Ejemplo 2: Sea la función y = (4 – x) Para que y pueda tomar valores reales ( números reales), está claro que: 4 – x 0 4 x Dom f(x) = (-oo, 4]

6 @ Angel Prieto BenitoApuntes 1º Bachillerato CT6 RECORRIDO O IMAGEN DE F(X) Ejemplo 3 Sea la función y = – x Está claro que y no puede tomar valores negativos, y el valor más pequeño será el 0 cuando x = 0. El recorrido de esta función es pues Img f(x) = [0, +oo) Ejemplo 4 Sea la función y = 4 / x Aparentemente para cualquier valor que tome x habrá un valor de y. Pero si x = 0, no existe ningún valor de y. El recorrido de esta función es pues Img f(x) = R – { 0 }

7 @ Angel Prieto BenitoApuntes 1º Bachillerato CT7 La gráfica de una función f es el conjunto de puntos del plano que se representa en un sistema de ejes cartesianos. El punto (a, b) está en la gráfica de f sólo si f(a)=b Para representar adecuadamente una función: 1.-Se identifica la variable independiente (x). 2.-Se forma una tabla, dando valores a la variable independiente (x) en número suficiente. 3.-Se elige una escala de los ejes acorde con los valores que se tienen o se predicen. 4.-Las escalas de ambos ejes no tienen que ser obligatoriamente iguales. 5.-El gráfico no debe ser ni muy pequeño ni muy grande. 6.-Se representan los pares de valores hallados en la tabla, obteniéndose un conjunto de puntos aislados. 7.-Si tiene sentido se unen los puntos, obteniéndose una línea, una curva o un conjunto de ambas, que es lo que se denomina gráfica de la función. GRÁFICA DE UNA FUNCIÓN

8 @ Angel Prieto BenitoApuntes 1º Bachillerato CT8 Cantidad en Kg Precio en Observar las distintas escalas de los ejes x y

9 @ Angel Prieto BenitoApuntes 1º Bachillerato CT9 X Consumo en litros/100 km Velocidad en km/h 11 8,5 6 Observar las distintas escalas de los ejes x y , ,

10 @ Angel Prieto BenitoApuntes 1º Bachillerato CT10 FORMAS DE DEFINICIÓN Tema 8.2 * 1º BCT

11 @ Angel Prieto BenitoApuntes 1º Bachillerato CT11 Una función puede venir definida o dada de distintas formas o maneras: 1.- Mediante una frase o enunciado que contenga una regla clara. Muchos problemas de álgebra, por ejemplo, son intrínsicamente funciones. 2.- Mediante una expresión algebraica o fórmula, que relacione cada elemento x del dominio con su imagen f(x). Es la más eficaz desde el punto de vista matemático. 3.- Por un conjunto de pares de valores (x,y) o Tabla de Valores. Contiene una parte del dominio con sus imágenes correspondientes. Para hallar algún otro valor se utiliza un proceso llamado interpolación. 4.- Mediante una gráfica o representación en el plano de la función. Su inconveniente es que no siempre es sencillo hallar una fórmula a partir a partir del gráfico. Formas de definir una función

12 @ Angel Prieto BenitoApuntes 1º Bachillerato CT12 Ejemplo práctico de una función ENUNCIADO Sea una hoja de papel rectangular, de 20x30 cm, a la que recortamos un cuadrado en cada esquina para construir una caja. Hallar el volumen de la caja. FÓRMULA El volumen, y, está en función del valor que tome el lado del cuadradito recortado, x. y = f(x) V = Largo. Ancho. Alto y = (30 – 2.x).(20 – 2.x).x V= f(x) = 4.x 3 – 100.x x 30 cm 20 cm x x x

13 @ Angel Prieto BenitoApuntes 1º Bachillerato CT13 Tenemos: f(x) = 4.x 3 – 100.x x TABLA DE VALORES (Parcial, o sea los valores reales acorde al enunciado) xy Lado del cuadrado recortado en cm GRÁFICA DE LA FUNCIÓN (Parcial) Volumen en cm3


Descargar ppt "@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 FUNCIONES, LÍMITES Y CONTINUIDAD Tema 8."

Presentaciones similares


Anuncios Google