La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 3 TRIGONOMETRÍA.

Presentaciones similares


Presentación del tema: "@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 3 TRIGONOMETRÍA."— Transcripción de la presentación:

1 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 3 TRIGONOMETRÍA

2 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT2 Tema 3.1 * 1º BCT EL RADIAN

3 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT3 EL RADIAN SISTEMA SEXAGESIMAL Cada una de las 360 partes iguales en que queda dividida la circunferencia se llama grado sexagesimal. Cada grado se divide en 60 minutos y cada minuto a su vez se divide en 60 segundos. EL RADIAN En trigonometría se utiliza como unidad fundamental el Radian, que se define como aquel ángulo cuyos lados comprenden un arco cuya longitud es igual a la del radio. Para deducir el valor de un radian partiremos de la fórmula para calcular el perímetro de una circunferencia. P = 2.π.r Sabemos que el giro completo de una circunferencia vale 360°: 2.π rad = 360º A B Radio =rArco AB = r

4 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT4 Equivalencias Tenemos que π radianes es igual a 180°. Y gracias a estos quebrados podremos obtener las siguientes equivalencias Rad.0π/6π/4π/3π/22π/33π/45π/6π Grados 0°30°45°60°90°120°135°150°180° Rad.7π/65π/44π/33π/25π/37π/411π/62π2π Grados 210°225°240°270°300°315°330°360°

5 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT5 Trigonometría Trigonometría La palabra trigonometría proviene del vocablo griego trígono –triángulo-, y metron –medida-, que se refiere a las medidas de los ángulos de un triangulo. La trigonometría es la rama de las matemáticas que intenta establecer las relaciones entre los lados y los ángulos de un triangulo, para así poder resolverlos. Así entonces resolver un triangulo significa encontrar el valor de sus tres lados, y el de sus tres ángulos, para esto nos valdremos del teorema de Pitágoras para encontrar el valor de un lado, si es que ya conocemos dos, y de las funciones trigonométricas para conocer el valor de los ángulos internos si es que ya conocemos mínimo un lado. Y así posteriormente podremos combinar las funciones trigonométricas con el teorema de Pitágoras para poder resolver problemas de mayor dificultad.

6 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT6 Teorema de Pitágoras. En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de cuadrados de los catetos. a 2 = b 2 + c 2 a b c Los triángulos sagrados de los agrimensores egipcios ya empleaban los triángulos de lados 3,4 y 5 y de 5,12 y 13 nudos para hallar ángulos rectos. Tres números enteros que verifiquen el Teorema de Pitágoras se dice que forman una terna pitagórica.

7 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT7 Reconocimiento de triángulos Sea un triángulo de lados a, b y c, donde a es el lado mayor. Si a 2 = b 2 + c 2 El triángulo es RECTÁNGULO. Tiene un ángulo recto (90º) opuesto al lado a. Si a 2 < b 2 + c 2 El triángulo es ACUTÁNGULO. Los tres ángulos son menores de 90º. Si a 2 > b 2 + c 2 El triángulo es OBTUSÁNGULO. Tiene un ángulo obtuso, mayor de 90º, el opuesto al lado a. a a a b c b c b c A=90º A<90º A>90º

8 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT8 Tema 3.2 * 1º BCT RAZONES TRIGONOMÉTRICAS

9 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT9 Razones trigonométricas Razones Trigonométricas En todo triángulo rectángulo, con independencia de las medidas de sus lados (catetos e hipotenusa) hay unas relaciones entre sus lados que se cumplen siempre, y que sólo dependen del valor de los ángulos agudos del triángulo. A b C c a B B C A=90º Hipotenusa

10 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT10 Razones en un triángulo RAZONES DIRECTAS El seno de un ángulo agudo, C, es la razón entre el cateto opuesto a dicho ángulo, c, y la hipotenusa, a. Se escribe sen C El coseno de un ángulo agudo, C, es la razón entre el cateto adyacente a dicho ángulo, b, y la hipotenusa, a. Se escribe cos C La tangente de un ángulo agudo, C, es la razón entre el cateto opuesto a dicho ángulo, c, y el cateto adyacente, b. Se escribe tg C

11 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT11 Razones en un triángulo RAZONES INVERSAS Se llaman así porque son inversas de las razones anteriores: La cosecante de un ángulo agudo, B, es la inversa del seno. Se escribe cosec B = 1 / sen B La secante de un ángulo agudo, B, es la inversa del coseno. Se escribe sec B = 1 / cos B La cotangente de un ángulo agudo, B, es la inversa de la tangente. Se escribe cotg B = 1 / tg B

12 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT12 Ejemplo Hallar las razones trigonométricas en el triángulo rectángulo cuyos lados miden: a=5, b=4, c=3 sen C=c/a=3/5=0,6 cos C=b/a=4/5=0,8 tg C=c/b=3/4=0,75 cosec C=1/sen C=1/0,6=5/3 sec C=1/cos C=1/0,8=1,25 cotg C=1/tg C=1/0,75=4/3 A b C c a B B C A=90º Hipotenusa IMPORTANTE Como un cateto siempre es menor que la hipotenusa: sen α 1 cos α 1

13 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT13 Ejemplo Hallar las razones trigonométricas en el triángulo rectángulo cuyos lados miden: a=10, b=8, c=6 sen B=b/a=8/10=0,8 cos B=c/a=6/10=0,6 tg B=b/c=8/6=4/3 cosec B=1/sen B=1/0,8=1,25 sec B=1/cos B=1/0,6=5/3 cotg B=1/tg B=1/(4/3)=0,75 A b C c a B B C A=90º Hipotenusa IMPORTANTE Cuando los ángulos son complementarios, B+C=90º: sen B = cos C cos B = sen C

14 @ Angel Prieto BenitoMatemáticas 1º Bachillerato CT14 Algunas razones muy utilizadas RAZONES MUY UTILIZADAS Conviene saberse de memoria las siguientes razones trigonométricas, al objeto de conseguir rapidez y exactitud: Sen 30º = 1 / 2 = 0,50 Cos 30º = 3 / 2 = 0,866 Tg 30º = 3 / 3 Sen 45º = 2 / 2 = 0,707 Cos 45º = 2 / 2 = 0,707 Tg 45º = 1 Sen 60º = 3 / 2 = 0,866 Cos 60º = 1 / 2 = 0,50 Tg 60º = 3 ½ 3/2 2 45º 30º 60º


Descargar ppt "@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 3 TRIGONOMETRÍA."

Presentaciones similares


Anuncios Google