LOS CONJUNTOS NUMÉRICOS

Slides:



Advertisements
Presentaciones similares
Año 2009 MATEMATICA Todo lo visto en 2º Año … Autoras: Abba - Romero.
Advertisements

Álgebra 2010 Clase N° 1 Conjuntos numéricos I
POTENCIACIÓN Y RADICACIÓN ESTUDIANTE: Javier Chávez Flores
División de Números Fraccionarios
Conjuntos numéricos El conjunto de los números naturales
TEMA 1. NÚMEROS NATURALES
Números fraccionarios
Álgebra elemental.
Números fraccionarios
Grupo 6 Los Números Enteros.
Potencias de exponente natural mayor que 1
Potencias de exponente natural mayor que 1
EXPONENTES Y RADICALES
TEMA Nº 1 Conjuntos numéricos.
Descomposición Factorial Unidad 5
Unidad 1 números naturales, enteros y fraccionarios
Unidad 1. Números reales Algebra superior.
Los Números Enteros.
Radicales y sus operaciones
NUMEROS NATURALES Y NÚMEROS ENTEROS
El Félix Evaristo Mejía
NÚMEROS REALES7 ÁMBITO CIENTÍFICO TECNOLÓGICO.
Profesora: Marcela Araneda P. Postítulo Matemática 2° Ciclo
Los Números Racionales
ING. MGS. OSCAR GUAYPATIN PICO
Los Conjuntos Numéricos
Razonamiento Cuantitativo
Multiplicación de números enteros de distinto signo
Apuntes de Matemáticas 3º ESO
SUBCONJUNTOS DE LOS NÚMEROS CARDINALES
LOS NUMEROS.
NÚMEROS RACIONALES Día 01 * 1º BAD CS
Curso de: Matemáticas de Apoyo
CONJUNTOS NUMERICOS.
COLEGIO IRLANDÉS A.C. Curso : Matemáticas Números Reales Siguiente.
LOS NUMEROS NATURALES Los números naturales son el conjunto de los números enteros positivos, y como positivo todo número que se ubica a la derecha del.
Ecuaciones Algebraicas
OPERATORIA DE LOS NÚMEROS RACIONALES
Índice Algebra operativa.
POTENCIACIÓN.
Matemáticas 1 NOMBRE DEL ALUMNO: Arturo Morales Texon
Operaciones aritméticas
INTRODUCCION AL ALGEBRA
TEMA 2: POTENCIAS DE BASE ENTERA
ARITMETICA.
Operaciones Algebraicas
Aritmética números reales.
Operación con Números Naturales
Números Naturales.
PROPIEDADES DE LOS NÚMEROS REALES
NÚMEROS REALES.
Ejercicio: π 4 Los Números Enteros …… 5 Valor Absoluto de un Número |-5 | = |+7| = | 0 | = |-15| = | 42 | = “El valor absoluto de un número,
Introducción Matemática Nivelatoria
Tema: 1 Divisibilidad con números naturales 1 Matemáticas 1º
CONJUNTOS NUMÉRICOS. 1.Números Naturales 1.1 Consecutividad numérica 1.2 Paridad e imparidad 1.3 Números primos 1.4 Múltiplos y divisores 1.5 Mínimo Común.
Operaciones con números enteros Z
Índice del libro 1. Los números naturales Los números naturalesLos números naturales Operaciones con números naturales 2. Los números enteros Los números.
1 Índice del libro Conjuntos numéricos 1.Números naturalesNúmeros naturales 2.Números enterosNúmeros enteros 3.Números racionalesNúmeros.
YULY PAOLA GÓMEZ PARRA *NÚMEROS NATURALES *NÚMEROS ENTEROS.
IN = Naturales INo = Cardinales Z = Enteros Q = Racionales Q* = Irracionales IR = Reales I = Imaginarios C = Complejos.
Potenciación La potenciación o exponenciación es una multiplicación de varios factores iguales, al igual que la multiplicación es una suma de varios.
Multiplicación de números enteros de distinto signo
INTRODUCCIÓN AL ALGEBRA CONJUNTOS NUMÉRICOS. LOS NUMEROS RACIONALES ( ℚ )
Los Números Racionales Prof. Javier Sandoval. Objetivos: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión,
1 Índice del libro Conjuntos numéricos: N, Z y Q 1.Introducción a N, Z y QIntroducción a N, Z y Q 2.Tipos de fraccionesTipos de fracciones.
Números y Fracciones 1.Los números naturales y los enterosLos números naturales y los enteros 2.Números primosNúmeros primos 3.Máximo común divisor y mínimo.
MATEMÁTICA Propiedad Intelectual Cpech Clase Resolución de problemas en los números racionales. PPTC3M019M311-A16V1.
1 Los números reales Los números racionales Los números irracionales
LOS NÚMEROS ¿Existe algún número que multiplicado por 2 sea 1? ENTEROS
Transcripción de la presentación:

LOS CONJUNTOS NUMÉRICOS Profesor: Sergio Delón.

EL CONJUNTO DE LOS NÚMEROS NATURALES LOS NÚMEROS NATURALES SURGEN DE LA NECESIDAD DE CONTAR QUE SE MANIFIESTA EN EL SER HUMANO DESDE SUS ORÍGENES. EL CONJUNTO QUE LOS AGRUPA SE DESIGNA POR IN.

IN= { 1,2 3,4,5,6,7.........} REPRESENTACIÓN EN LA RECTA NUMÉRICA

DOS CARACTERISTICAS DE ESTE CONJUNTO a) TIENE UN NÚMERO INFINITO DE ELEMENTOS b) CADA ELEMENTO TIENE UN SUCESOR Y TODOS, EXCEPTO EL 1, UN ANTECESOR

SUBCONJUNTOS DE LOS NÚMEROS NATURALES 1) CONJUNTO DE LOS NÚMEROS PARES. P= {2,4,6,8,10,12,14,..............} NÚMERO PAR X= 2n P = { x/x  IN , X = 2n, n  IN }

2) C0NJUNTO DE LOS NÚMEROS IMPARES NÚMERO IMPAR x = 2n - 1 I={ x/x IN, x=2n - 1, n  IN }

3) CONJUNTO DE LOS NÚMEROS PRIMOS PRIMOS ={ SON TODOS AQUELLOS NÚMEROS QUE SOLAMENTE SE PUEDEN DIVIDIR POR SI MISMO Y POR UNO, (EL 1 NO ES PRIMO) } EJERCICIO: HALLAR TODOS LOS NÚMEROS PRIMOS MENORES QUE 100

RESPUESTA 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

RESPUESTA 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

OPERACIONES Y PROPIEDADES EN IN LA ADICIÓN:Es la operación mediante la cual buscamos la cardinalidad del conjunto unión de dos conjuntos disjuntos a,b IN , a + b IN : propiedad de clausura a,b IN , a + b = b + a : propiedad conmutativa a,b,c IN , (a + b) + c = a +( b + c) : propiedad asociativa

Si en una adición todos los sumandos son iguales podemos definir una nueva operación llamada MULTIPLICACIÓN a,b IN , a · b IN : propiedad de clausura a,b IN , a · b = b · a : propiedad conmutativa a,b,c IN , (a · b) · c = a ·( b · c) : propiedad asociativa a,b,c IN , a ·( b + c) =( a·b) +(a ·c) : distributividad de la multipli- cación con respecto a la adición

DIVISIBILIDAD DE LOS NÚMEROS

1) Un número es divisible por dos:cuando termina en cifra par o cero Ejemplo : 34 , 1578 , 6790 , 135796 , 862 2) Un número es divisible por tres: cuando la suma de sus cifras es múltiplo de tres. Ejemplo : 321 , 558 , 123561 , 87 , 51 3+2+1 , 5+5+8 , 1+2+3+5+6+1 , 8+7 , 5+1 6 18 18 15 6

3) Un número es divisible por cuatro: cuando las dos últimas cifras son múltiplos de cuatro o cuando las dos últimas cifras son cero. Ejemplo : 3464 , 924 , 736 , 100 , 456700 4) Un número es divisible por cinco : cuando termina en cero o en cinco. Ejemplo : 145 , 2675 , 340 , 980 , 123450

5) Un número es divisible por seis: cuando los es por dos y tres a la vez (al mismo tiempo). Ejemplo : 132 , 648 , 138 , 786 6) Un número es divisible por nueve: cuando la suma de sus cifras es múltiplo de nueve. Ejemplo: 45 , 558 , 34767 , 9817254

MÁXIMO COMÚN DIVISOR El 18, 24 y 36, admiten como divisores comunes el 1, 2,3 y 6, como el mayor de los divisores es el 6, entonces el máximo común divisor (m.c.d) entre 18, 24 y 36 es 6: 18={1,2,3,6,9,18} 24={1,2,3,4,6,8,12,24} 36={1,2,3,4,6,9,12,18,36} {1,2,3,6}, entonces el 6 es m.c.d

AVANZANDO UN POCO MÁS Y RECONOCIENDO LA IMPORTANCIA DEL CERO COMO NÚMERO,”SE AGREGA” ESTE ELEMENTO AL CONJUNTO IN, FORMANDO UN NUEVO CONJUNTO QUE SE DESIGNA INO

INO ={0,1,2,3,4,5,6,7,8,...........} INO = IN  { 0 } IN  INO EL CONJUNTO DE LOS NÚMEROS CARDINALES INO ={0,1,2,3,4,5,6,7,8,...........} INO = IN  { 0 } IN  INO

AL EFECTUAR ALGUNAS OPERACIONES CON LOS ELEMENTOS DE LOS INO , SE VE FÁCILMENTE QUE NO HAY DIFICULTADES EN CUANTO A LA SUMA O ADICIÓN Y EN CUANTO A LA MULTIPLICACIÓN.

EN OTRAS PALABRAS, SI SE SUMAN O MULTIPLICAN NÚMEROS NATURALES, EL RESULTADO ES TAMBIÉN UN NÚMERO NATURAL.

SIN EMBARGO, AL RESTAR EN EL CONJUNTO IN, SURGE UN SERIO PROBLEMA: NO TODA RESTA ENTRE NÚMEROS NATURALES TIENE UNA RESPUESTA QUE SEA TAMBIÉN UN NÚMERO NATURAL.

PARA ENFRENTAR SITUACIONES COMO LA ÚLTIMA PLANTEADA, EL HOMBRE “INVENTO” NUEVOS NÚMEROS QUE PERMITEN SEGUIR AVANZANDO

EL CONJUNTO DE LOS NÚMEROS ENTEROS ( Z)

Z= { -..............-4,-3,-2,-1,0,1, 2, 3, 4, ...................+ } ENTEROS NEGATIVOS ENTEROS POSITIVOS -Z +Z CERO

LOS NÚMEROS ENTEROS PODEMOS UBICARLOS EN LA RECTA NUMÉRICA.

Z = -Z  { 0 }  +Z

ORDEN EN Z 1) Todo número a la derecha del cero, es positivo 2) Todo número a la izquierda del cero, es negativo 3) Todo número que esté a la derecha de otro, es mayor que él 4) Todo número que esté a la izquierda de otro, es menor que el 5) Todo número negativo es menor que cero 6) Todo número positivo es mayor que cero. 7)Todo número negativo es menor que cualquier número positivo

PROPIEDADES a,b Z, a + b Z : operación binaria a,b Z, a + b = b + a : conmutativa a,Z, a + 0 = a : existencia elemento neutro a,b,c Z, (a + b) +c = a + (b + c) : asociatividad a,Z, a +(-a) =0 :existencia del opuesto o inverso aditivo

DEBIDO A ESTAS CINCO PROPIEDADES DECIMOS QUE EL CONJUNTO DE LOS ENTEROS CON LA OPERACIÓN ADICIÓN TIENE ESTRUCTURA ALGEBRAICA DE GRUPO ABELIANO O GRUPO CONMUTATIVO. (Z , +) es grupo abeliano

Todo número entero consta de dos partes: magnitud o valor absoluto y signo. Ejemplo: +1 tiene valor absoluto 1 y signo + -1 tiene valor absoluto 1 y signo - . Los enteros positivos los escribiremos indistintamente con o sin signo, o sea, escribiremos +1 simplemente 1. Escribiremos el valor absoluto de un número colocando el número entre barras: +5  = 5  -6  = 6

TABLA DE LA MULTIPLICACIÓN Y DIVISIÓN

POTENCIACIÓN DE NÚMEROS ENTEROS

a·a·a·a·a·a·a·a... = an n veces a POTENCIA an producto de factores iguales a·a·a·a·a·a·a·a... = an n veces a

SIGNO DE UNA POTENCIA

1) BASE POSITIVA Y EXPONENTE NATURAL: LA POTENCIA ES SIEMPRE UN NÚMERO ENTERO POSITIVO EJEMPLOS: 25 = 2·2·2·2·2=32 34 = 3·3·3·3=81 73 = 7·7·7=343

2) BASE NEGATIVA Y EXPONENTE NATURAL: SE PRESENTAN DOS CASOS a) BASE NEGATIVA Y EXPONENTE PAR: LA POTENCIA ES SIEMPRE POSITIVA. EJEMPLOS: 1) (-2)4=-2·-2·-2·-2=+16=16 2) (-17)2=-17·-17=289 3) (-3)6=-3·-3·-3·-3·-3·-3= 729

b) BASE NEGATIVA Y EXPONENTE IMPAR: LA POTENCIA ES SIEMPRE UN NÚMERO NEGATIVO EJEMPLO: 1) (-2)7=-2·-2·-2·-2·-2·-2·-2= -128 2) (-3)5=-3·-3·-3·-3·-3= -243 3) (-4)3=-4·-4·-4= -64

POTENCIA DE LA FORMA a-p a  Z  p  N

EJEMPLOS:

Si la base de una potencia es (a/b) y el exponente (-p) la situación se plantea de la siguiente forma.

EJEMPLOS

Si la base es un número cualquiera distinto de cero y el exponente es cero , la situación planteada queda expresada de la siguiente forma.

MULTIPLICACIÓN DE POTENCIAS DE IGUAL BASE ¿Cómo se puede expresar a3 · a4 ? a3= a·a·a a3 · a4 =a·a·a·a·a·a·a = a7 3 + 4 a4=a·a·a·a a3 · a4 = a3+4= a7 EN GENERAL : am · an = am + n

EJEMPLOS: f) X · X = X2 a) 23 · 25 = 28 = 256 b) m4 · m5 · m6 = m15 g) c · c5 = c6 h) b3 · b6 · b · b8 =b18 c) a3 ·an = a 3 + n d) 103 · 104 · 102 · 107 = 1016 e) (2X)5 · (2X)6 · (2x)9 = (2x)20

DIVISIÓN DE POTENCIAS DE IGUAL BASE ¿A que es equivalente

O SEA EN GENERAL

Resolver Si aa = 2. Calcular

Simplificar: 2

EL CONJUNTO DE LOS NÚMEROS RACIONALES Q

AL PLANTEAR LA NECESIDAD DE DIVIDIR NÚMEROS ENTEROS, SURGE UN PROBLEMA: EL CUOCIENTE DE DOS NÚMEROS ENTEROS , NO SIEMPRE ES UN NÚMERO ENTERO. PARA DAR SOLUCIÓN AL PROBLEMA, SE AMPLIO EL CONJUNTO Z DE LOS NÚMEROS ENTEROS, FORMANDOSE ASÍ UN NUEVO CONJUNTO; EL DE LOS NÚMEROS RACIONALES QUE SE IDENTIFICA CON LA LETRA Q.

Q ES EL CONJUNTO DE LOS NÚMEROS DE LA FORMA a/b , SIENDO a Y b NÚMEROS ENTEROS Y b DISTINTO DE CERO.

NUMERADOR:LAS PARTES IGUALES QUE TOMAN DEL ENTERO DENOMINADOR: LAS PARTES IGUALES EN QUE SE DIVIDE EL ENTERO

EJEMPLOS

OPERACIONES CON FRACCIONES

ADICIÓN

IGUAL DENOMINADOR

DENOMINADORES CON FACTORES COMUNES

DISTINTO DENOMINADOR

SUSTRACCIÓN

IGUAL DENOMINADOR

DENOMINADORES CON FACTORES COMUNES

DISTINTO DENOMINADOR

MULTIPLICACIÓN

MULTIPLICACIÓN DE FRACCIONES

DIVISIÓN

DIVISION DE FRACCIONES

6) con el vino que hay en un recipiente se pueden llenar quince botellas y media de ¾ de litro. Con esta cantidad de vino: a) ¿Cuántas botellas de un litro se podrían llenar? R. se podrían llenar 11 botellas

b) ¿cuántas botellas de litro se podrían llenar? R. se podrían llenar 7 botellas

7) Un cuarto de kilogramo de queso tiene un valor de $850 7) Un cuarto de kilogramo de queso tiene un valor de $850.¿cuánto cuesta un trozo que pesa 2 kilogramos y tres cuartos? Los 2k y tres cuartos valen $ 9.350

Otro procedimiento $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850 $850

8) Don Pedro tenía una parcela de 1 hectária, vendió la quinta parte y el resto lo repartió equitativamente entre sus cuatro hijos.¿cuántos metros cuadrados recibio cada uno? 2.000m2 2.000m2 2.000m2 2.000m2 2.000m2 R: recibio cada uno2.000m2 1 hectária = 10.000m2

9) Javier compra una bebida de litros para servirles a sus compañeros que han ido a estudiar con él. Si los vasos tienen una capacidad de 1/4 litro a) ¿Para cuántos vasos alcanzará? R. Alcanzará para 10 vasos

b) Si los llena hasta las 3/4 partes, ¿para cuántos vasos le alcanzará? R. Alcanzará para 13 vasos

EL CONJUNTO DE LOS NÚMEROS IRRACIONALES Q`

N=Números Naturales Z=Números Enteros Q=Números Racionales    I=Irracionales(en amarillo) R=Números Reales

DESARROLLOS DECIMALES NO PERIÓDICOS Existen ciertos desarrollos decimales infinitos que no son periódicos y, por lo tanto, no son números racionales. Es imposible escribirlos en la forma a/b con “a” y “b” enteros. Ejemplos: 0,12569870002360087910........... -9,12365478987562000127.......... 4,987560056001200360014........

Si bien es cierto que algunos de estos desarrollos tienen una “ley de formación”, sin embargo, no son periódicos. Estos números, llamados irracionales, forman un conjunto del mismo nombre, representados por Q`. En este conjunto, se encuentran números tan importantes como el número irracional.  = 3,141592654........

La misma situación se presenta con las raíces cuadradas de algunos números racionales positivos.

Todos los números estudiados se caracterizan por tener un desarrollo decimal, sea periódico o no periódico. Se forma, así, un importante conjunto numérico: los números reales IR IR = Q  Q`

IR reales racionales (desarrollo decimal periódico) Q desarrollos decimales reales irracionales (desarrollo decimal no periódico) Q` IR

RECORDANDO LOS UNIVERSOS NUMÉRICOS ESTUDIADOS, EL SIGUIENTE DIAGRAMA ILUSTRA LA IDEA DE CÓMO SE HAN IDO AMPLIANDO, A REQUERIMIENTO DE LAS NECESIDADES OPERATORIAS

IR Q Z IN0 IN Q`

N=Números Naturales Z=Números Enteros Q=Números Racionales    I=Irracionales(en amarillo) R=Números Reales

OPERACIONES EN IR. PROPIEDADES En los conjuntos numéricos anteriormente estudiados, ya has visto las propiedades de las operaciones. En IR se cumplen importantes propiedades que son el fundamento de la operatoria algebraica.

ADICIÓN a,b,c  IR MULTIPLICACIÓN operación binaria a + b  IR a · b  IR conmutatividad a + b = b + a a · b = b · a asociatividad (a + b) + c = a + (b + c) (a·b)·c = a·(b·c) elemento neutro a + 0 = 0 + a = a 1·a = a·1 = a elemento inverso a + (-a) = 0 a · 1= 1 a distributividad de la suma sobre la a · (b + c) = a · b + a · c multiplicación

NOTACIÓN CIENTÍFICA

Con este nombre, se conoce una forma de escribir los números y que es muy usual en algunas ciencias (por ejemplo, Física, Química...), ya que resulta bastante práctica. El número 25.000.000.000 (veinticinco mil millones), se escribe así: 25.000.000.000 = 2,5 · 1010 De esta manera, se consigue “abreviar” la escritura de ciertos números, generalmente muy grandes, o muy pequeños como el ejemplo siguiente 0,000000231 = 2,31 · 10-7

En general, se dice que un número está escrito en notación científica , si se ha expresado en la forma k · 10n , donde k es un número real, tal que.

EJEMPLOS 1) 1.500 = 150·10 15·100 1,5·1000 1,5·103 2) 128.000 = 12800·10 1280·100 128·1000 12,8·10000 1,28·100000 1,28·105

7.280.000 = 7,28·106 para comprender mejor la notación, observa ordenadamente lo siguiente, en relación con el ejemplo anterior: 7.280.000 = 7,28 · 106 = 72,8 · 105 = 728 · 104 = 7.280 · 103 = 72.800 · 102 = 728.000 · 101 =7.280.000 · 100 (100 = 1)

El caso de los números muy pequeños es exactamente igual, usando potencias de 10 con exponente negativo: Ejemplos: 0,000053 = 5,3 · 10-5 0,000000000000524 = 5,24 · 10-13 0,00000073 = 7,3 · 10-7 0,0000000935 = 9,35 · 10-8 0,00006 = 6 · 10-5

El mismo procedimiento estudiado hasta ahora se aplica para expresar números negativos en notación científica. Basta anteponer al factor K, el signo negativo. Ejemplos: -125.000 = -1,25 · 105 -48.000 = -4,8 · 104 -0,00068 = -6,8 · 10-4 -0,000000003 = -3 · 10-9