@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 PROBABILIDAD U.D. 13 * 1º BCS.

Slides:



Advertisements
Presentaciones similares
AZAR Y PROBABILIDAD..
Advertisements

Esther Capitán Rodríguez
FUNCIONES ELEMENTALES
TEOREMA CENTRAL DEL LÍMITE Tema 13.3 * 2º BCS
Apuntes de Matemáticas 3º ESO
Tema 10 * Integrales DEFINIDAS
Matemáticas 2º Bachillerato CS
PROBABILIDAD.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 PROBABILIDAD TEMA 14.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 DISTRIBUCIÓN NORMAL Tema 15.
Matemáticas 2º Bachillerato CS
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 TEMA 14 * INFERENCIA ESTADÍSTICA MATEMÁTICAS A. CS II.
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 PROBABILIDAD Tema 15.
PROBABILIDAD COMPUESTA
Apuntes de Matemáticas 3º ESO
DÍA 57 * 1º BAD CT PROBABILIDADES
PROBABILIDAD.
PROBABILIDAD. REGLA DE LAPLACE DÍA 56 * 1º BAD CS
TEMA 1 Sistemas de ecuaciones lineales
Tema 14 DISTRIBUCIÓN Angel Prieto Benito
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 CONTRASTES DE HIPÓTESIS Tema 14 * 2º BCS.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 REGLA DE LAPLACE Bloque IV * Tema 167.
REGLA DE LAPLACE ESPAD III * TC 38.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 PROBABILIDAD CONDICIONADA Bloque IV * Tema 168.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS1 MATEMÁTICAS A. CS I TEMA 4.X PROBLEMAS DE GAUSS.
CÁLCULO DE PROBABILIDADES
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 Tema 14 DISTRIBUCIÓN BINOMIAL.
Apuntes de Matemáticas 3º ESO
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 ALEATORIEDAD Bloque IV * Tema 166.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 Tema 14 DISTRIBUCIÓN BINOMIAL.
DISTRIBUCIÓN BINOMIAL
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 MATEMÁTICAS A. CS II Tema 11 * PROBABILIDADES.
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 PROBABILIDAD Tema 15.
Tema 14 DISTRIBUCIÓN Angel Prieto Benito
SUCESOS Y PROBABILIDAD
Apuntes de Matemáticas 2º ESO
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 MATEMÁTICAS A. CS II Tema 11 * PROBABILIDADES.
CÁLCULO DE PROBABILIDADES
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 CÁLCULO DE PROBABILIDADES TEMA 13.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 CÁLCULO DE PROBABILIDADES TEMA 13.
@ Angel Prieto BenitoMatemáticas 4º ESO Opción B1 PROBABILIDAD CONDICIONADA Y TOTAL Tema 16.4 * 4º ESO Opc B.
1º BACHILLERATO | Matemáticas © Oxford University Press España, S.A Hacer clic en la pantalla para avanzar EXPERIENTO ALEATORIO. SUCESOS Un experimento.
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 MATEMÁTICAS A. CS II Tema 11 * PROBABILIDADES.
EXPERIMENTOS SIMPLES ESPAD III * TC 39.
Tema 2: ¡Eso depende! El azar depende de muchos factores.
POLINOMIOS TEMA 2 * 4º ESO Opc Angel Prieto Benito
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 DISTRIBUCIÓN BINOMIAL MATEMÁTICAS A. CS II Tema 12.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 U.D. 3 EXPRESIONES ALGEBRAICAS.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 U.D. 14 * 1º BCS DISTRIBUCIÓN BINOMIAL.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 U.D. 14 * 1º BCS DISTRIBUCIÓN BINOMIAL.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 PROBABILIDAD U.D. 13 * 1º BCS.
Apuntes Matemáticas 1º ESO
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 U.D. 14 * 1º BCS DISTRIBUCIÓN BINOMIAL.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 ESTADÍSTICA UNIDIMENSIONAL U.D. 10 * 1º BCS.
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 U.D. 15 * 1º ESO PROBABILIDAD.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 U.D. 5 * 1º BCT SISTEMAS DE ECUACIONES E INECUACIONES.
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 U.D. 15 * 1º ESO PROBABILIDAD.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 DISTRIBUCIÓN NORMAL U.D. 15 * 1º BCS.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 PROBABILIDAD U.D. 13 * 1º BCS.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 DERIVADAS U.D. 10 * 1º BCS.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 PROBABILIDAD U.D. 13 * 1º BCS.
@ Angel Prieto BenitoMatemáticas 2º Bachillerato C.S.1 INTEGRALES U.D. 10 * 2º BCS.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 PROBABILIDAD U. D. 13 * 4º ESO E. AC.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 PROBABILIDAD U.D. 13 * 1º BCS.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 RESOLUCIÓN DE SISTEMAS U.D. 1 * 2º BCS.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 PROBABILIDAD U.D. 13 * 1º BCS.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.11 DERIVADAS U.D. 7 * 2º BCS.
Matemáticas Aplicadas CS I
PROBABILIDAD U. D. 15 * 4º ESO E. Angel Prieto Benito
PROBABILIDAD U. D. 13 * 4º ESO E. Angel Prieto Benito
Transcripción de la presentación:

@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 PROBABILIDAD U.D. 13 * 1º BCS

@ Angel Prieto BenitoMatemáticas Aplicadas CS I2 PROBABILIDAD COMPUESTA U.D * 1º BCS

@ Angel Prieto BenitoMatemáticas Aplicadas CS I3 Son muy usadas en problemas donde se precisa organizar los datos para calcular probabilidades. En general los sucesos a trabajar son incompatibles entre sí, aunque estén relacionados. Ejemplo_1 En la presente tabla de contingencia, hallar la probabilidad de que elegido un alumno al azar, este sea: a)Chico. b)Chica. c)Chico en ESO d)Chica en ESO e)Chico en Bachillerato d)Chica en Bachillerato. d)Alumno en ESO e)Alumno en Bachillerato Tablas de contingencia Chico Chica ESO BACH

@ Angel Prieto BenitoMatemáticas Aplicadas CS I4 Resolución a)Chico. P(A)=195/400=0,4875 b)Chica. P(B)=205/400=0,50125 c)Chico en ESO P(C)=145/400=0,3625 d)Chica en ESO P(D)=130/400=0,325 e)Chico en Bachillerato P(E)=50/400=0,125 f)Chica en Bachillerato. P(F)=74/400=0,185 g)Alumno en ESO P(G)=275/400=0,6875 h)Alumno en Bachillerato P(H)=125/400=0,3125 Chico Chica ESO BACH

@ Angel Prieto BenitoMatemáticas Aplicadas CS I5 Ejemplo_2 En la presente tabla de contingencia sobre la dedicación preferente del tiempo libre de los alumnos de un instituto, hallar la probabilidad de que: a)Sea chico y se dedique al deporte. b)Sea chica y se dedique a la lectura o los juegos. c)Se dedique a ver Cine/TV d)Se dedique a la música. Resolución P(A)= 60/400 = 0,15 P(B)=45/ /400 = =55/400 = 0,1375 P(C)= 60/400=0,15 P(D)=175/400 =0,4375 Chico Chica Música Deporte Lectura Juegos Cine/TV

@ Angel Prieto BenitoMatemáticas Aplicadas CS I6 Experimentos y Tablas EJEMPLO 1 Experimento Se lanza al aire dos dados tetraédricos NO TRUCADOS. ¿Cuál es la probabilidad de obtener como suma …?. xifihipi 211/160, /160, /160, /160, /160, /160, /160, /

@ Angel Prieto BenitoMatemáticas Aplicadas CS I7 EJEMPLO 2 Experimento Se lanza al aire dos dados hexaédricos NO TRUCADOS. ¿Cuál es la probabilidad de obtener como suma …?. xifihipi 211/360, /360, /360, /360, /360, /360, /360, /360, /360, /360, /360, /

@ Angel Prieto BenitoMatemáticas Aplicadas CS I8 EJEMPLO 3 Experimento Se lanza al aire dos dados uno tetraédrico y otro hexaédrico. ¿Cuál es la probabilidad de obtener como resta …?. xifihipi 044/240, /240, /240, /240, /240, /240, /

@ Angel Prieto BenitoMatemáticas Aplicadas CS I9 Unión en sucesos compatibles Cuando dos o más sucesos son compatibles (se pueden dar a la vez) ya hemos dicho que: P(AUB)=P(A)+P(B)-P(A).P(B) Ello es así porque si no restamos el producto, los elementos comunes estarían repetidos. El producto simboliza a los elementos comunes. Ejemplo 1 Hallar la probabilidad de que al extraer una carta de una baraja el resultado sea un oro o un rey. P(O)=10/40=0,25 P(R) =4/40=0,1 P(OUR)=P(O)+P(R) - P(O).P(R) P(OUR)=0,25+0,1 – 0,25.0,1 P(OUR)=0,35 – 0,025 P(OUR)=0, Rc 4 5 Re 67 Ro Rb So Co

@ Angel Prieto BenitoMatemáticas Aplicadas CS I10 Ejemplo 2 Una vivienda rural es compartida por tres familias, A, B y C. Ocupan el 55%, el 40% y el 30% de la vivienda respectivamente. Hay espacios comunes a dos y a las tres familias. Hallar la probabilidad de que eligiendo un lugar al azar: a) Coincidan A y B b) Coincidan A y C c) Encontremos B o C d) Encontremos A o C e) Encontremos A, B o C FAMILIA A FAMILIA B FAMILIA C

@ Angel Prieto BenitoMatemáticas Aplicadas CS I11 Resolución Aunque no nos lo hubiera indicado el enunciado, hay zonas comunes, pues en total no pueden ocupar el =125% de la vivienda. a) Coincidan A y B P(A∩B)=P(A).PB)= 0,55.0,40=0,22 b) Coincidan A y C P(A∩C)=P(A).P(C)= 0,55.0,30=0,165 c) Encontremos B o C P(BUC)=P(B)+P(C) - P(B).P(C)= 0,40+0,30 – 0,40.0,30 =0,58 d) Encontremos A o C P(AUC)=P(A)+P(C) - P(A).P(C)= 0,55+0,30 – 0,55.0,30 =0,685 e) Encontremos A, B o C P(AUBUC)=P(A)+P(B)+P(C) - P(A).P(B) - P(B).P(C) – P(A).P( C) + + P(A).P(B).P(C) = = 0,55+0,4+0,30 – 0,22 – 0,12 – 0, ,55.0,4.0,30 = 0,811