1.Principios de variable compleja 2.Análisis de Fourier 3.Ecuaciones diferenciales.

Slides:



Advertisements
Presentaciones similares
Solución de problemas en circuitos eléctricos por transformada de Laplace. AUTORES:
Advertisements

Unidad 1: ECUACIONES DIFERENCIALES DE PRIMER ORDEN
METODO DE LOS COEFICIENTES INDETERMINADOS
Problemas de Valores en la Frontera en Coordenadas Rectangulares
Problemas de Valores en la Frontera en Otros Sistemas Coordenados
Sistemas de Ecuaciones Diferenciales Lineales
Ecuaciones diferenciales ordinarias.
Hallar la Familia de Curvas
INAOE CURSO PROPEDEUTICO PARA LA MAESTRIA EN ELECTRONICA
DEFINICIONES Y TERMINOLOGÍA
Ecuaciones diferenciales 1. Ecuaciones diferenciales de primer orden
Unidad 1: ECUACIONES DIFERENCIALES DE PRIMER ORDEN
Unidad 2: ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
¿Qué es una ecuación diferencial?
Modelos de Sistemas Continuos Ing. Rafael A. Díaz Chacón U.C.V. C RAD/00.
Métodos Matemáticos I.
Ecuaciones diferenciales
Métodos Matemáticos I.
Ecuaciones diferenciales
Unidad 2: ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
Teoría de sistemas de Ecuaciones No lineales
Solución de Ecuaciones Diferenciales.
CLASE a2 PARTE 1: ECUACIÓN DIFERENCIAL LINEAL DE 1er. ORDEN HOMOGÉNEA
1.Introducción 2.Casos simples de reducción del orden 3.Ecuaciones lineales homogéneas con coeficientes constantes 4.Ecuaciones lineales no homogéneas.
Ecuaciones Diferenciales aplicadas Ing. Martha H. Acarapi Ch.
Ecuaciones diferenciales
Ecuaciones diferenciales de orden superior
Es una ecuación diferencial ordinaria Es una ecuación diferencial ordinaria de primer orden Es una ecuación diferencial lineal Es.
I.Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas. II.Ecuaciones diferenciales de.
Computational Modeling for Engineering MECN 6040
1.Conceptos Fundamentales de Ecuaciones diferenciales. Clasificación y concepto de solución. 2.Ecuaciones de segundo orden homogéneas: Coeficientes.
I.Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas. II.Ecuaciones diferenciales de.
Ecuaciones diferenciales
Ecuaciones diferenciales 1. Ecuaciones diferenciales de primer orden
Métodos Matemáticos I.
I.Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas. II.Ecuaciones diferenciales de.
Martes 20 de marzo de 2012 de 12:00 a 13:30.
Ecuaciones Diferenciales
1.Introducción 2.Casos simples de reducción del orden 3.Ecuaciones lineales homogéneas con coeficientes constantes 4.Ecuaciones lineales no homogéneas.
Ecuaciones diferenciales
Ecuaciones diferenciales 1. Ecuaciones diferenciales de primer orden
Ecuaciones diferenciales
Ecuaciones Diferenciales Homogéneas. Por: Fabiola Celis Cervantes
I.Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas. II.Ecuaciones diferenciales de.
1.Introducción 2.Casos simples de reducción del orden 3.Ecuaciones lineales homogéneas con coeficientes constantes 4.Ecuaciones lineales no homogéneas.
Ecuaciones diferenciales
I.Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas. II.Ecuaciones diferenciales de.
Métodos Matemáticos I.
ECUACIONES DIFERENCIALES
I.Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas. II.Ecuaciones diferenciales de.
I.Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas. II.Ecuaciones diferenciales de.
1.Introducción 2.Casos simples de reducción del orden 3.Ecuaciones lineales homogéneas con coeficientes constantes 4.Ecuaciones lineales no homogéneas.
Una ecuación diferencial es una ecuación que involucra una función desconocida y sus derivadas.
1 Análisis Matemático II Presentaciones en el Aula TEMA 3 Otras herramientas para la resolución de EDO Autor: Gustavo Lores 2015 Facultad de Ingeniería.
TEMA 2 Análisis Matemático II Presentaciones en el Aula
CONCEPTOS BÁSICOS DE ECUACIONES DIFERENCIALES
I.Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas. II.Ecuaciones diferenciales de.
1.Introducción 2.Casos simples de reducción del orden 3.Ecuaciones lineales homogéneas con coeficientes constantes 4.Ecuaciones lineales no homogéneas.
ECUACIONES DIFERENCIALES. ECUACION DIFERENCIAL Una ecuación diferencial es una ecuación en la que intervienen derivadas de una o más funciones desconocidas.ecuaciónderivadas.
Ecuaciones Diferenciales Parciales
ECUACIONES DIFERENCIALES REALIZADO POR: ARELIS BETANCOURT C.I XII TRIMESTRE.
U-6. Cap. III Introducción a la solución por series.
Métodos Matemáticos I.
Unidad 4. Capítulo II. Clasificación.
Unidad 1: ECUACIONES DIFERENCIALES DE PRIMER ORDEN
Métodos Matemáticos I.
Instituto Nacional de Astrofísica, Óptica y Electrónica
Métodos Matemáticos I.
Unidad 5. Capítulo VIII. Ejercicios.
Ecuaciones Diferenciales Ordinarias Lineales de segundo orden.
Transcripción de la presentación:

1.Principios de variable compleja 2.Análisis de Fourier 3.Ecuaciones diferenciales

I. Ecuaciones diferenciales de primer orden II.Ecuaciones diferenciales de segundo orden III.Introducción a las ecuaciones en derivadas parciales

I. Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas.

II. Ecuaciones diferenciales de segundo orden 1.Ecuaciones homogéneas de coeficientes constantes. 2.Ecuación de Euler-Cauchy. 3.Ecuaciones heterogénea y métodos de solución. Coeficientes indeterminados y variación de parámetros. 4.Solución en series de potencias. 5.Ecuaciones diferenciales de Bessel, Legendre, Hermite y Laguerre 6.Solución usando transformada de Fourier. 7.Funciones especiales: gamma y error.

III. Introducción a las ecuaciones en derivadas parciales 1.Ecuaciones lineales y separación de variables. 2.Problemas de condición de frontera, valores propios y funciones propias. 3.Ecuaciones especiales: de difusión, de onda y de Laplace. 4.Solución en series de Fourier.

I.Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas. II.Ecuaciones diferenciales de segundo orden 1.Ecuaciones homogéneas de coeficientes constantes. 2.Ecuación de Euler-Cauchy. 3.Ecuaciones heterogénea y métodos de solución. Coeficientes indeterminados y variación de parámetros. 4.Solución en series de potencias. 5.Ecuaciones diferenciales de Bessel, Legendre, Hermite y Laguerre 6.Solución usando transformada de Fourier. 7.Funciones especiales: gamma y error. III.Introducción a las ecuaciones en derivadas parciales 1.Ecuaciones lineales y separación de variables. 2.Problemas de condición de frontera, valores propios y funciones propias. 3.Ecuaciones especiales: de difusión, de onda y de Laplace. 4.Solución en series de Fourier.

Es una ecuación diferencial ordinaria Es una ecuación diferencial ordinaria de segundo orden Es una ecuación diferencial lineal Es una ecuación diferencial lineal homogénea Es una ecuación diferencial lineal homogénea con coeficientes constantes

Ecuación de primer orden

Solución de una ecuación de primer orden

Es una ecuación diferencial ordinaria Es una ecuación diferencial ordinaria de segundo orden Es una ecuación diferencial lineal Es una ecuación diferencial lineal homogénea Es una ecuación diferencial lineal homogénea con coeficientes constantes

I.Ecuaciones diferenciales de primer orden 1.Teoría básica y métodos de solución. 2.Breviario de aplicaciones físicas. II.Ecuaciones diferenciales de segundo orden 1.Ecuaciones homogéneas de coeficientes constantes. 2.Ecuación de Euler-Cauchy. 3.Ecuaciones heterogénea y métodos de solución. Coeficientes indeterminados y variación de parámetros. 4.Solución en series de potencias. 5.Ecuaciones diferenciales de Bessel, Legendre, Hermite y Laguerre 6.Solución usando transformada de Fourier. 7.Funciones especiales: gamma y error. III.Introducción a las ecuaciones en derivadas parciales 1.Ecuaciones lineales y separación de variables. 2.Problemas de condición de frontera, valores propios y funciones propias. 3.Ecuaciones especiales: de difusión, de onda y de Laplace. 4.Solución en series de Fourier.

II. Ecuaciones diferenciales de segundo orden 1.Ecuaciones homogéneas de coeficientes constantes. 2.Ecuación de Euler-Cauchy. 3.Ecuaciones heterogénea y métodos de solución. Coeficientes indeterminados y variación de parámetros. 4.Solución en series de potencias. 5.Ecuaciones diferenciales de Bessel, Legendre, Hermite y Laguerre 6.Solución usando transformada de Fourier. 7.Funciones especiales: gamma y error.

Es una ecuación diferencial ordinaria Es una ecuación diferencial ordinaria de segundo orden Es una ecuación diferencial lineal Es una ecuación diferencial lineal homogénea Es una ecuación diferencial lineal homogénea con coeficientes constantes