La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Teoría de sistemas de Ecuaciones No lineales

Presentaciones similares


Presentación del tema: "Teoría de sistemas de Ecuaciones No lineales"— Transcripción de la presentación:

1 Teoría de sistemas de Ecuaciones No lineales
La forma general de un sistema de ecuaciones no lineales es: f1(x1, x2 x3, …, xn) = 0 f2(x1, x2 x3, …, xn) = 0 f3(x1, x2 x3, …, xn) = 0 fn(x1, x2 x3, …, xn) = 0 Definiendo una función F F(x1, x2 x3, …, xn) = [f1(x1, x2 x3, …, xn),f2(x1, x2 x3, …, xn), f3(x1, x2 x3, …, xn) , fn(x1, x2 x3, …, xn)] Usando una notacion vectorial para representar las variables X1,X2,…,Xn ). El sistema puede representarse por F(x)=0 La solución a este sistema es el vector X=[x1, x2 x3, …, xn] que hace que simultaneamente todas las ecuaciones sean igual a 0.

2 Teoría de sistemas de Ecuaciones No lineales
Métodos de Solución : Método de Iteración de Punto Fijo para sistemas de ecuaciones no lineales (Método de punto fijo multivariable). Método de Newton para sistemas de ecuaciones no lineales.

3 Método de Iteración de Punto fijo para sistemas de Ecuaciones no Lineales
Anteriormente se desarrollo el método de iteración de punto fijo para resolver la ecuación f(x)=0 transformando esta ecuación en una ecuación de la forma x= g(x), usando el criterio de convergencia |g’(x)|<1 en el intervalo [x1,x2] donde g(x) pertenece [x1,x2] para x que pertenece a [x1,x2]

4 Método de Iteración de Punto fijo para sistemas de Ecuaciones no Lineales
Para el caso de un conjunto de ecuaciones No lineales utilizaremos un procedimiento similar extendiéndolo a todas las ecuaciones, usando un criterio de convergencia: Una condición suficiente aunque no necesaria, para asegurar la convergencia es que Para todos los puntos (x1,x2) de la región del plano que contiene todos los valores (x1k, x2k ) y la raíz buscada.

5 Método de Iteración de Punto fijo para sistemas de Ecuaciones no Lineales
Ejemplo 1 Encuentre una solución del sistema de ecuaciones no lineales Solución Con el despeje de X1 del termino (-10X1) en la primera ecuación y de X2 del termino de (-10X2) en la segunda ecuación resulta. X1=(X12+X )/ 10 X2=(X1X22+X1 + 8 ) / 10

6 x1k+1 = g1(x1k , x2k ) x2k+1 = g2(x1k , x2k )
Por medio de Iteración por desplazamientos simultáneos x1k+1 = g1(x1k , x2k ) x2k+1 = g2(x1k , x2k ) Con los valores iniciales x10 = 0, x20 = 0 se inicia el proceso Primera iteración X11=( )/ 10 = 0.8 X21=(0(0) ) / 10 = 0.8

7 Segunda iteración X12=((0.8)2+(0.8)2 + 8)/ 10 = 0.928 X22=(0.8(0.8) ) / 10 = Al continuar el proceso iterativo, se encuentra la siguiente sucesión de valores k X1k X2k 1 2

8 k X1k X2k 3 4 5 6 7 8 9 10 11 12 13

9 x1k+1 = g1(x1k , x2k ) x2k+1 = g2(x1k+1 , x2k )
Cualquiera que sea el sistema que se va a resolver con este método, puede aumentarse la velocidad de convergencia usando desplazamientos sucesivos en lugar de los desplazamientos simultáneos es decir se itera mediante x1k+1 = g1(x1k , x2k ) x2k+1 = g2(x1k+1 , x2k ) Como en el caso lineal (jacobi y Gauss-Seidel), si la iteración por desplazamientos simultáneos diverge generalmente el metodo por desplazamientos sucesivos divergiría mas rápido; es decir se detecta mas rapido la divergencia, por lo que se recomienda en general el uso de desplazamientos sucesivos en lugar de desplazamientos simultáneos .

10 Resuelva el sistema del ejemplo anterior utilizando el metodo de punto fijo para sistemas no lineales con desplazamientos sucesivos.

11 Método de Newton para sistemas de ecuaciones no lineales
Todas las ecuaciones deben de ser cero en las raíces Se define la matriz J(x) como: J(x) =

12 Método de Newton para sistemas de ecuaciones no lineales
Entonces podemos escribir F(x)+XiJ(x)=Xi+1 J(x) Dividiendo J(x) y reacomodando: Xi+1= Xi-J(x)-1 F(x) Esta es la Ecuación de Newton para sistemas No Lineales Puesto que en cada iteración se tiene que calcular la inversa de la matriz J(x)y esto implica un considerable esfuerzo de cálculo , para evitar este paso se utiliza el artificio de encontrar un vector Y que satisfaga J(x)Y= -F(x)

13 Método de Newton para sistemas de ecuaciones no lineales
Se establece un esquema iterativo donde cada nueva aproximacion se obtiene como: X(k+1) = y +x(k) Al resolver el sistema tomando como valores iniciales (x1,x2)=(0,0) se tiene: J(x)( x1,x2)=


Descargar ppt "Teoría de sistemas de Ecuaciones No lineales"

Presentaciones similares


Anuncios Google