INTRODUCCIÓN Descripción Objetivos Análisis de costos

Slides:



Advertisements
Presentaciones similares
Andrés Felipe Marin Yeison Vélez
Advertisements

SERVOMOTORES.
1. el origen de los robots Los humanos hemos intentado tener máquinas que funcionaran de manera automática y autónoma desde hace mucho tiempo. ¿PORQUÉ.
CALIDAD DE SERVICIO ELÉCTRICO.
TESINA DE SEMINARIO DE GRADUACION:. Para el desarrollo de este proyecto utilizaremos dos transceptores infrarrojos Pololu IR Beacon, uno de ellos deberá
AMPLIFICADORES CON MOSFET
Facultad de Ingeniería Electrónica y Telecomunicaciones
EL SCR.
Equipo N°5 Joel González Rodríguez. Edgar Alejandro De la Cruz Galván.
Presentación N°II Laboratorio de SEP
Seminario de Graduación
MICROCONTROLADORES AVANZADOS
Motores.
OBJETIVOS ESPECÍFICOS.
TECNOLOGICO DE ESTUDIOS SUPERIORES DE TIANGUISTENCO
Autogeneración Eléctrica
Presentación de Instrumentación Básica de la Electrónica
ETAPA UNO Y DOS. UNO CUMPLIDA!!! Organización y Distribución de Tareas. Recopilación de información y herramientas necesarias para los diseños. Adquisición.
GS3055-IG Comunicador Universal GSM/GPRS
Anterior La tablilla principal controla todas las conexiones para los diferentes dispositivos de entrada y salida, es también la que tiene los chips para.
“Control de un Ascensor y Adquisición de Datos con LABVIEW ”
LA ELECTRICIDAD.
Parte II – Electrocinética Por: Ing. Nelson Velásquez
Demultiplexor y Chip 74LS154
Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Noviembre de 2009 Sistemas Digitales Electrónica Digital I Universidad Autónoma.
DISEÑO E IMPLEMENTACION DE UN ROBOT SEGUIDOR DE LINEA CARGUERO
Raúl Heiras Andazola Edgar A. Robles Reyes Luis Alonso Ramos Fdez Diseño de Robots Dr. Carlos F. Pfeiffer Octubre 22, 2003.
CONTROL REMOTO SEGURO Álvaro Bravo Mercado Domingo Devotto Nelson Figueroa.
Conceptos de la Electrónica
SERVOMOTORES Equipo # 5 Integrantes: Ahuejote Hernández Brenda Itzel
MANEJO DEL OSCILOSCOPIO
Integrantes: David Miguel Martínez Rodríguez Diego David Bósquez Granja.
PROYECTO DE CONTROL CON MICROPROCESADORES
Electrónica de Potencia
Gerardo Villagómez G. Rodrigo Jurado E.. Objetivo del Proyecto  Comandar nuestro robot pololu 3π acompañado del KIT AVR Butterfly, de forma que se llegue.
SISTEMAS. ¿Qué es un sistema? Un sistema es un conjunto de elementos interrelacionados e interactuantes entre sí. El concepto tiene dos usos muy diferenciados,
Instalación de Computadoras
Doble Banda Lateral con Portadora Suprimida
Electromagnetismo y ley de Faraday
UTILIZACIÓN DE REPOSTERÍA DE EVENTOS Y ALARMAS DE MEDIDORES CON INFRAESTRUCTURA AMI PARA CONTROL DE PÉRDIDAS TÉCNICA Y NO TÉCNICAS. Autor: Msc. Ing. Juan.
Como interpretar Un osciloscopio
Robótica M.C. Fco. Javier de la Garza S.
“REDISEÑO Y CONSTRUCCION DEL SISTEMA ELÉCTRICO Y ELECTRÓNICO DE CONTROL DE UNIDADES EDUCATIVAS, TIPO MAWDSLEY’S, PARA EL ESTUDIO DE CONVERTIDORES AC/DC,
Circuitos de excitación y protección.
capacitancia Almacenamiento de la energía eléctrica
GS3055-IG Comunicador Universal GSM/GPRS
SOFTWARE EL SOFTWARE HACE REFERENCIA A LA PARTE
María Stefanny Mosquera Flor 11-1
Conceptos Antenas Jesus Rodriguez.
OPERAR EL EQUIPO DE COMPUTO
FUNCIONAMIENTO DEL SISTEMA DE CARGA EN UN VEHICULO
GIRO EL ÁNGULO QUE QUIERO O LO CONVIERTO EN MOTOR
FUENTES DE ALIMENTACION
Multimetro.
Universidad Nacional de Ingeniería
Establece una relación entre la diferencia de potencial (v) y la
Conceptos de mantenimiento de maquinas electricas
EL MULTIMETRO Un multímetro, también denominado polímetro, tester o multitester, es un instrumento de medición que ofrece la posibilidad de medir distintos.
¿Qué es la Electricidad?
EDWARD RAMIRO HERNANDEZ PRESENTADO A WILLIAM CAMACHO 1003 J.T
DETECTOR DE MINAS ANTI PERSONALES
CORRIENTE CONTINUA La corriente continua se refiere al flujo continuo de carga eléctrica a través de un conductor entre dos puntos de distinto potencial,
Tecnología e Informática
TECNOLOGÍAS E INTERFACES DE COMPUTADORAS
INSTITUTO TECNOLÓGICO DE SALINA CRUZ
Rafael Luis Camiña Cultrera
Infografía Placa Base Oscar Wilson Mendoza Martínez
Las fuentes de alimentación
SENSORIZACION Y CONTROL DE ROBOTS MOVILES. INTEGRANTES DEL EQUIPO. LIC. ISIDRO LOPEZ RUIZ LIC. GUILLERMO MATUS GARCIA LIC. OLIVIA SANTOS REGALADO. 19 DE.
TRANSISTORES.
Transcripción de la presentación:

DISEÑO E IMPLEMENTACION DE UN ROBOT TELEMANIPULADO PUESTO A PRUEBA EN EL CER2005

INTRODUCCIÓN Descripción Objetivos Análisis de costos Resumen del proyecto

Descripción CAMPEONATO ECUATORIANO DE ROBOTS 2005 Primer evento organizado en Guayaquil por ESPOL, Centro de Visión Robótica, y IEEE-Rama Estudiantil en la Plaza Rodolfo Baquerizo para el agosto 19-21 Las Categorías : Robot bailarín, Robot seguidor de línea, Prueba de creatividad, Fútbol Robótico Simulado (Simurosot), Fútbol Robótico Real (Mirosot), Categoría libre y Batalla de Robots

Descripción BATALLA DE ROBOTS: En esta categoría los participantes tienen la posibilidad de construir robots que se enfrenten entre sí en un campo de batalla, dotados con armas que ayuden a neutralizar, atacar o a defenderse del oponente. Estos robots, que son controlados ya sea de manera remota o autónoma y son movidos por baterías

Objetivos generales Despertar el interés de los estudiantes para que éstos participen de una forma más activa en trabajos de investigación y desarrollo en áreas tales como la robótica. Adoptar el método de “aprender jugando”. Esto se debe a que los estudiantes se verán involucrados en un trabajo práctico y teórico. Adicionalmente, con el proyecto se promueve el intercambio de experiencias y conocimientos entre los investigadores de la ESPOL e investigadores de otras partes del mundo

Objetivos personales Analizar y experimentar con el módulo de transmisión para conocer bien sus funciones y las señales que manejan. Diseñar e implementar el circuito de módulo de control general, capaz de recibir, procesar la información y generar señales digitales y PWM que permitan el movimiento del robot a través de los motores DC. Diseñar e implementar la parte mecánica del robot. Participar periódicamente en los campeonatos de batalla de robots. Por ejemplo CER2006

Análisis de costos 580.35 Ítem Descripción Cant. P.U. Total 1 Equipo de Radio Control Futaba (Transmisor, Receptor, servomotores, baterías y cargador) 173.85 2 Microcontrolador PIC16F876 9.40 3 Tarjeta PCB 16.00 32.00 4 Motores DC 40.00 120.00 5 Cable UTP 2mts 0.40 0.80 6 Estructuras metálicas, rulimanes, llantas, soldada, cortes y ajustes 174.00 7 Baterías de gel : 12V y 6V 20.00 8 Mosfets Irfz44n 0.70 4.20 9 Mosfets Irf9540 1.40 8.40 10 Sockets de 14 pines 0.10 11 LM324 0.45 0.90 12 CD4081b 0.25 0.75 13 74LS153 14 Resistencias, capacitores, interruptores, cables 14, y otros 15.00 TOTAL aprox. 580.35

Resumen del proyecto En el capítulo 1 se realiza un estudio de bases teóricas en la cual se detalla cada una de los elementos que son utilizados para la implementación o ensamblaje del robot. En el capítulo 2 se trata sobre los dispositivos involucrados en el sistema de comunicación. En el capítulo 3 se presenta el módulo de control. El circuito de control digital y electrónico

Resumen del proyecto El capítulo 4 propone el diseño del módulo de potencia que son las baterías. En el capítulo 5 se indica el funcionamiento de los motores Por último las conclusiones, recomendaciones y futuros trabajos.

PRESENTACIÓN DEL PROYECTO MODULOS DE TRANSMISION MODULOS DE CONTROL MODULOS DE POTENCIA MOTORES ELECTRICOS CONCLUSIONES, RECOMENDACIONES Y FUTUROS TRABAJOS

MODULOS DE TRANSMISION El Transmisor T4YF Posee 4 canales independientes están distribuidos en forma vertical, horizontal y tiene su propio batería recargable de suministro cuyo voltaje de alimentación es 9.6 voltios DC a 600mAh y tiene cristal de 72.950 Mhz. También posee una antena vertical expandidle metálica de 1 metro y 4 interruptores de que permiten cambiar el sentido de giro de los servomotores sin necesidad de desconectarlo y cambiar de polaridad.

MODULOS DE TRANSMISION El Receptor R127DF El Receptor tiene capacidad para recibir 7 señales de FM que vienen del transmisor, es decir tiene 7 canales, pero en este caso solo se utilizaría 4 canales provenientes del transmisor T4YF y los 3 canales quedarían libres También pose una antena flexible de 1mts y un cristal de la misma banda de frecuencia que el transmisor T4YF.

Datos Experimentales 1 Con la palanquita de control en la posición superior

Datos Experimentales 2 Con la palanquita de control en la posición central.

Datos Experimentales 3 Con la palanquita de control en la posición inferior.

MODULO DE CONTROL constituye el punto central de operaciones del mismo Este módulo es el encargado recibir señales provenientes del transmisor y enviar dichas señales que son procesadas por el Microcontrolador y amplificadas por los OpAmps hacia los motores. Dos submódulos han sido necesarios para su implementación: Control digital y Control electrónico.

MODULO DE CONTROL Control digital esta encargado de recibir señales PPM y transformar en señales PWM y señales digitales Control electrónico es encargado de amplificar las señales de control digital y enviar señales a los motores a través del puente H.

MODULOS DE CONTROL Duración y división del pulso PPM Centro Bajada Subida

MODULO DE CONTROL Diagrama de bloques

MODULOS DE CONTROL Diagrama de flujo para la programación del PIC

MODULO DE CONTROL El esquemático general real

MODULO DE CONTROL Simulación de la parte digital

MODULO DE CONTROL Circuito Real

MODULOS DE CONTROL Circuito equivalente para simulaciones

MODULOS DE CONTROL Resultados de las simulaciones RV1 en posición superior

MODULOS DE CONTROL Resultados de las simulaciones Simulación de amplificación de PWM1a (Generador de Pulsos): la salida de Opamp y la salida de AND

MODULOS DE CONTROL Resultados de las simulaciones Simulación de amplificación de PWM1b (Tierra): la salida de OPAMP y la salida de AND

MODULOS DE CONTROL Resultados de las simulaciones Simulación electrónica del puente H: grafico superior indica el terminal izquierdo del motor y el gráfico inferior indica el terminal derecho del motor

MODULOS DE CONTROL Resultados de las simulaciones RV1 en posición central

MODULOS DE CONTROL Resultados de las simulaciones Simulación de amplificación de PWM1a (Tierra): la salida de OPAMP y la salida de AND

MODULOS DE CONTROL Resultados de las simulaciones Simulación de amplificación de PWM1b (Tierra): la salida de OPAMP y la salida de AND

MODULOS DE CONTROL Resultados de las simulaciones Simulación electrónica del puente H: grafico superior indica el terminal izquierdo del motor y el gráfico inferior indica el terminal derecho del motor

MODULOS DE CONTROL Resultados de las simulaciones RV1 en posición inferior

MODULOS DE CONTROL Resultados de las simulaciones Figura 3.10b Simulación de amplificación de PWM1a (Tierra): la salida de OPAMP y la salida de AND

MODULOS DE CONTROL Resultados de las simulaciones Simulación de amplificación de PWM1b (Generador de Pulsos): la salida de OPAMP y la salida de AND

MODULOS DE CONTROL Resultados de las simulaciones Simulación electrónica del puente H: grafico superior indica el terminal izquierdo del motor y el gráfico inferior indica el terminal derecho del motor

MODULOS DE CONTROL Resultados Experimentales En el PIC 16F876 se ha podido ver los siguientes resultados

MODULOS DE CONTROL Resultados Experimentales En cuantos a la señal de PWM1 o PWM2 es capturado en el osciloscopio (pin12 y pin13 del PIC)

MODULOS DE CONTROL Resultados Experimentales En la salida del CD4081BE observado en el Osciloscopio

MODULOS DE POTENCIA La manera como se distribuye la energía con los demás módulos. el diseño del sistema regulador de voltaje. Para la implementación del proyecto se ha utilizado baterías recargables de gel y de ácido para los motores y para el alimentación del módulo de control. Pero para el transmisor se ha utilizado batería recargable de Ni-cad independientemente

MODULOS DE POTENCIA Diagrama de bloques del módulo de potencia

MODULOS DE POTENCIA La batería que se ha utilizado para el transmisor es de tipo NI-Cad, puede proveer hasta 600mAh y 9.6V

MODULOS DE POTENCIA La batería de gel sellada no derramable es normalmente usado en las alarmas domiciliarias, para que la memoria no se borre, ni que el circuito se resetee, por lo general son más grandes que Ni-Cad y son de mayor voltaje y amperaje. Una de las ventaja que tiene la batería es que se puede usar en cíclicamente con 14.4 a 15 Voltios y uso temporal con voltaje de recarga de 13.5 a 13.8 Voltios

MODULOS DE POTENCIA Esquemático de Regulación de Voltaje KIA7805

MODULOS DE POTENCIA Resultados experimentales Con el Regulador KIA7805

MOTORES ELECTRICOS El sentido de giro y la velocidad de los motores dependen de la polaridad en sus terminales y el tiempo de encendido y apagado llamado “los pulsos electrónicos” Existen los integrados controladores de motores DC como por ejemplo el L293 y L298 que permiten el manejo de motores DC de baja potencia Los motores están conectados mediante puentes H para su manipulación. Dependiendo del tipo de señal que reciba en cada gates de los MOSFET determina la dirección y la velocidad.

MOTORES ELECTRICOS Tabla de Propiedades físicas del robot

Cálculos teóricos basados en las especificaciones del motor MOTORES ELECTRICOS Cálculos teóricos basados en las especificaciones del motor Torque = ( 1 / 2 ) * Us * m * g * Ro Torque =( 1 / 2 ) ( 0.7 ) (51,03 Kg ) ( 9.8 m/seg2 ) (0.001 m) Torque = 175 N-m Potencia = V * I Potencia1 = 12 Volt * 1.85 Amp Potencia1 = 22.2 W (sin carga) Potencia2 = 12 Volt * 5.2 Amp Potencia2 = 62.4W (con carga)

MOTORES ELECTRICOS Datos experimentales Diferentes corrientes medidos en el motor

MOTORES ELECTRICOS Datos experimentales Velocidad mínima y sentido de giro horario

MOTORES ELECTRICOS Datos experimentales Velocidad media y sentido de giro horario

MOTORES ELECTRICOS Datos experimentales Velocidad superior y sentido de giro horario

MOTORES ELECTRICOS Datos experimentales Velocidad mínima y el sentido de giro anti-horario

MOTORES ELECTRICOS Datos experimentales Velocidad media y el sentido de giro anti-horario

MOTORES ELECTRICOS Datos experimentales Velocidad superior y el sentido de giro anti-horario

CONCLUSIONES Y RECOMENDACIONES El proyecto propuesto corresponde a la segunda generación de robots, pues el programa que permite su control se ejecuta mediante la elección de secuencias de movimiento a través de botones o a través de palancas de control El sistema de R/C con frecuencia FM de 72Mhz ha sido el más eficiente, porque se ha podido observar durante el evento CER2005 organizado en Guayaquil fallas en otros sistemas de comunicación, la gran mayoría ha usado R/C de los juguetes de corto alcance y muy restringido por su poca funcionalidad.

CONCLUSIONES Y RECOMENDACIONES Entre más canales de comunicación se pueden agregar más funciones al robot y por lo tanto este puede tener un mejor desempeño. Mientras mayor es el rango de frecuencia de transmisión mejor es la comunicación entre el transmisor y el receptor.

CONCLUSIONES Y RECOMENDACIONES El circuito de control implementado en este proyecto funcionaría para cualquier robot que use motores de 12V a 18V y hasta 20A de consumo, que use señal PPM en transmisión y que tenga el fuente de poder o potencia máxima de 20V. La implementación del circuito del control hubiera sido mucho más fácil y simple, si hubiera podido conseguir los elementos llamados “Drivers” como son: L298(DC Motor Driver) de mayor potencia, TD430(Power Mosfet Driver), HIP4081(H Bridge Driver), LT1161(Mosfet Driver), etc. Los cuales son inexistentes en el mercado del Ecuador.

CONCLUSIONES Y RECOMENDACIONES En el proyecto se ha implementado un circuito equivalente a estos elementos mencionado anteriormente y que sean existentes en el mercado del Ecuador, para proporcionar a los terminales Gates de los Mosfets del puente H el voltaje y corriente adecuado para el funcione los Mosfets. Se pudo comprobar que las operaciones de los elementos electrónicos reales no son muy similares a los elementos de los simuladores como es el caso de LM324 y CD4081 en Pspice.

CONCLUSIONES Y RECOMENDACIONES Los Mosfets son elementos muy delicados en cuanto a los voltajes que deben suministrar en la compuerta(Gate), en caso contrario el Mosfet no opera en voltajes muy al limites ni muy bajos al limite , hay casos donde el Mosfet se quema disipando altas temperaturas en cuestión de segundos. Lo ideal para el robot es conseguir unos motores de alta efectividad, en otras palabras de mayor torque y velocidad angular, pero por lo general son de alto torque y menor velocidad o de mayor velocidad y menor torque.

CONCLUSIONES Y RECOMENDACIOENS Por lo general los motores DC son de alta velocidad, pero no son de uso continuo sino de uso temporal, porque disipa mucho calor. A menos que tengan un buen sistema de refrigeración. Dado a las pruebas realizadas, es mejor encender o energizar el transmisor primero y después el receptor para el encendido y lo contrario para el apagado, debido a que puede quedar señales remanente El receptor tiene antena flexible por lo cual hay que dejar expuesto al aire libre para poder recibir mejor la señal, porque al estar encerrado dentro de una caja de control se formaría una Jaula de Faraday, haciendo que la comunicación se quede interrumpida o aislada.

FUTUROS TRABAJOS Utilizar otros tipos de motores o de mejor eficiencia en la parte de tracción del robot. Aprovechar las canales libres del R/C para implementar más funciones de ataque y defensa. Mejorar el circuito de control habilitando más puertos de salida, en otras palabras modificar la programación del microcontrolador.

FUTUROS TRABAJOS Agregar nuevos módulos mecánicos pero controlado por impulsos electrónicos como son : motor de combustión, sistema neumática En cuestiones mecánicas, utilizar materiales duros para brindar la protección a la parte de control y livianos para no sobrepasar el peso máximo establecido.

FUTUROS TRABAJOS En caso de utilizar el motor de combustión, se implementaría siguiente esquemático

FUTUROS TRABAJOS En caso de utilizar 2 motores de encendido y apagado se implementaría siguiente esquemático