Matemáticas 1º Bachillerato CS

Slides:



Advertisements
Presentaciones similares
UNIVERSIDAD POPULAR AUTONOMA DE VERACRUZ EDUCACION MEDIA SUPERIOR BACHILLERATO EN LINEA MATEMATICAS IV Tutor: ELIHURRIGEL RASCON VASQUEZ Alumna: LINDA.
Advertisements

Funciones Potencias, exponenciales y logarítmicas.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 Bloque I * Tema 013 ECUACIONES LOGARÍTMICAS.
ECUACIONES EXPONENCIALES
Matemáticas 1º Bachillerato CT
DÍA 13 * 1º BAD CT ECUACIONES EXPONENCIALES Y LOGARITMICAS
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 1 * 4º ESO Opc B NÚMEROS REALES.
Matemáticas Aplicadas CS I
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema VII Derivadas.
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 3 * 4º ESO Opc B ECUACIONES Y SISTEMAS.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 2 ECUACIONES Y SISTEMAS.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 TEMA 2 MATEMÁTICA FINANCIERA.
LOGARITMOS.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 U.D. 2 MATEMÁTICA FINANCIERA.
FUNCIONES POTENCIAS, EXPONENCIALES Y LOGARÍTMICAS. 4º Medio 2013.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 U.D. 2 * 4º ESO E. AC. RADICALES Y LOGARITMOS.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 U. D. 4 * 4º ESO E. AC. ECUACIONES.
@ Angel Prieto BenitoMatemáticas 2º Bach. CCSS1 LÍMITES DE FUNCIONES U.D. 6 * 2º BCS.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 U.D. 1 * 1º BCT NÚMEROS REALES.
FUNCIONES ELEMENTALES
Fundamentos para el Cálculo
Matemáticas 2º Bachillerato C.S.
Apuntes Matemáticas 2º ESO
Apuntes 1º Bachillerato CT
RADICALES Y LOGARITMOS
Apuntes de Matemáticas 3º ESO
Funciones Potencias, exponenciales y logarítmicas.
SISTEMAS DE ECUACIONES E INECUACIONES
Matemáticas 2º Bachillerato C.S.
Apuntes de Matemáticas 2º ESO
NÚMEROS REALES U.D. 1 * 4º ESO E. Angel Prieto Benito
Apuntes 1º Bachillerato CT
Apuntes Matemáticas 2º ESO
Apuntes de Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
RADICALES Y LOGARITMOS
Apuntes Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 2º ESO
ECUACIONES U. D. 4 * 4º ESO E. Angel Prieto Benito
Matemáticas 2º Bachillerato C.S.
Apuntes de Matemáticas 2º ESO
RADICALES Y LOGARITMOS
Matemáticas 2º Bach. CCSS
Matemáticas Aplicadas CS I
RESOLUCIÓN DE SISTEMAS
Apuntes de Matemáticas 3º ESO
ANÁLISIS MATEMÁTICO INECUACIONES
POTENCIAS Y RADICALES U. D. 2 * 4º ESO E. Angel Prieto Benito
ECUACIONES Y SISTEMAS U. D. 6 * 4º ESO E. Angel Prieto Benito
Apuntes Matemáticas 1º ESO
COMPOSICIÓN Y TRANSFORMACIÓN DE FUNCIONES
ECUACIONES U. D. 4 * 4º ESO E. Angel Prieto Benito
Matemáticas Aplicadas CS I
Matemáticas 2º Bachillerato C.S.
Matemáticas 1º Bachillerato CT
Apuntes de Matemáticas 2º ESO
RADICALES Y LOGARITMOS
Apuntes Matemáticas 1º ESO
Apuntes Matemáticas 2º ESO
ECUACIONES EXPONENCIALES
Apuntes 2º Bachillerato C.S.
POTENCIAS Y RADICALES U. D. 2 * 4º ESO E. Angel Prieto Benito
Apuntes Matemáticas 2º ESO
Matemáticas 1º Bachillerato CT
Apuntes de Matemáticas 3º ESO
Matemáticas Aplicadas CS I
Definición de logaritmo Logaritmo de un número positivo N en una base b, positiva y diferente de 1, es el exponente x al cual debe elevarse la base.
INTEGRALES U.D. 7 * 2º Angel Prieto Benito
Apuntes Matemáticas 2º ESO
Transcripción de la presentación:

Matemáticas 1º Bachillerato CS ECUACIONES Y SISTEMAS U.D. 4 @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

ECUACIONES EXPONENCIALES Y LOGARÍTMICAS U.D. 4.6 * 1º BCS @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

Ecuaciones exponenciales Hay tres tipos de ecuaciones exponenciales que se pueden resolver sin necesidad de aplicar logaritmos: f(x) g(x) 1º Tienen iguales las bases: a = a Resolución: Se igualan los exponentes y se resuelve la nueva ecuación. f(x) g(x) k 2º Las bases están relacionadas: a = b , donde a = b Resolución: Se sustituye una base y se resuelve la nueva ecuación, que tendrá ahora igualdad de bases. f(x) g(x) h(x) 3º Hay sumas o restas de potencias: a + b + c = 0 Resolución: Se aplican las propiedades de las potencias al objeto de conseguir un factor común de una potencia de igual base y exponente. @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

Ecuaciones exponenciales (I) Resuelve las siguientes ecuaciones exponenciales. x+3 2x+5 5 = 5 Al ser igual la base: x + 3 = 2x+5  3 – 5 = 2x – x , x = - 2 x – 3 x2 – 5 3 = 3 Al ser igual la base: x – 3 = x2 – 5  0 = x2 – x – 2 Resolviendo la ecuación: 1 +/- V(1 + 8) 1 +/- 3 x = ---------------------- = ------------ = 2 y - 1 2 2 @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

Ecuaciones exponenciales (II) Resuelve las siguientes ecuaciones exponenciales. 2x+3 2x+5 4 = 2 Al ser 4 = 22 2(2x+3) 2x+5 4x+6 2x+5 2 = 2  2 = 2 Al ser iguales las bases, deben ser iguales los exponentes: 4x+6 = 2x+5  4x-2x = 5-6  2x = -1  x = -1/2 @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

Ecuaciones exponenciales (III) Resuelve las siguientes ecuaciones exponenciales.   x2 - 17.x+30 6 = 1 Como 60 = 1, podemos poner:  x2 - 17.x+30 6 = 60 Al ser iguales las bases, serán iguales los exponentes:  x2 - 11.x+30 = 0 Resolviendo la ecuación, queda x = 2, x = 15 @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

Ecuaciones exponenciales (y IV) Resuelve las siguientes ecuaciones exponenciales. 5x + 5x-1 + 5x-2 = 31 No se pueden sumar tal como están. Como en el exponente hay una diferencia, significa que proviene de división de potencias de igual base: 5x + 5x / 5 + 5x /25= 31 25.5x + 5.5x + 5x = 25.31 (25+5+1).5x = 25.31 31.5x = 25.31 Luego 5x = 25  x = 2 @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

Ecuaciones LOGARÍTMICAS (I) Resuelve la siguiente ecuación logarítmica. x+3 x 5 = 8 Al no ser iguales las bases ni los exponentes, se toman logaritmos: x+3 x Log 5 = Log 8 (x+3).Log 5 = x.Log 8 (x+3).0,698970 =x.0,903090 x.0,698970 + 2,096910=x.0,903090 2,096910=x.0,903090 - x.0,698970 2,096910 = 0,204120.x x = 2,096910 / 0,204120 x = 10,2729 @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

Ecuaciones LOGARÍTMICAS (I) Resuelve la siguiente ecuación logarítmica. x – 2 √x 3 = 5 Al no ser iguales las bases ni los exponentes, se toman logaritmos: x- 2 √x Log 3 = Log 5  (x-2).Log 3 = √x.Log 5   (x-2).0,477121 = √ x. 0,698970  (x-2) = √ x. 1,464972 Al ser ecuación radical, se eleva todo al cuadrado: x2-4x+4 = 2,1461.x x2 – 6,1461.x+4 = 0  Ecuación de 2º grado que resolvemos: 6,1461 +/- √ (37,7745 – 16) 6,15 +/- 4,67 10,82 / 2 = 5,41 x = ------------------------------------- = --------------- = 2 2 1,48 / 2 = 0,74 Y comprobamos con la calculadora que x = 0,74 no es válida @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

Ecuaciones LOGARÍTMICAS (I) Resuelve la siguiente ecuación logarítmica. x + 4 x2 5 = 3 Al no ser iguales las bases ni los exponentes, se toman logaritmos: x + 4 x2 Log 5 = Log 3 (x + 4).Log 5 = x2 .Log 3 (x + 4).0,698970 = x2 . 0,477121 (x + 4).1,4650 = x2 x2 – 1,465 x – 5,86 = 0  Ecuación de 2º grado que resolvemos: 1,1465 +/- √ (2,1461 + 23,44) 1,1465 +/- 5,06 6,20 / 2 = 3,10 x = ---------------------------------------- = --------------------- = 2 2 - 3,92 / 2 = - 1,96 Y comprobamos con la calculadora que x = - 1,96 no es válida @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

Ecuaciones Logarítmicas (II) Resuelve la ecuación: log x - log (x-1) = log 3 Por la propiedad de la división de logaritmos: x log ------- = log 3  x /(x -1) = 3  x = 3x – 3  3 = 2x  x = 1,5 x – 1 2log x + log (x - 1) = 3 Por las propiedades de la potencia y multiplicación de logaritmos: log x2 + log (x -1) = 3  log x2 (x -1) = log 1000 x3 - x2 = 1000  x3 - x2 – 1000 = 0 Ecuación esta última (polinómica) que se resolvería. Al ser P(10) < 0 y P(11) > 0 una de las raíces, quizás la única, estará entre 10 y 11. @ Angel Prieto Benito Matemáticas 1º Bachillerato CS

Ecuaciones Logarítmicas (II) Resuelve las ecuaciones: log3 x - log9 x = log27 3 Hacemos un cambio de base: log3 x log3 x log3 3 --------- - --------- = --------- log3 3 log3 9 log3 27 --------- - --------- = --------- 1 2 3 6.log3 x - 3.log3 x = 2.log3 3 3.log3 x = 2  log3 x3 = 2  32 = x3 Y por último: 9 = x3  x = raíz cúbica de 9 = 2,08 @ Angel Prieto Benito Matemáticas 1º Bachillerato CS