Asignatura: Matemática Básica Uso del DERIVE Asignatura: Matemática Básica Departamento de Matemática Facultad de Ingeniería Mecánica
Temas: 1- Representación gráfica de funciones. 2- Cálculo aproximado de raíces reales de polinomios. 3- Representación gráfica en coordenadas polares.
Pantalla de Álgebra del Derive
Observaciones Es perfectamente factible abrir más de una ventana de cada tipo a la vez, para ello: 1- Marque en Ventana y luego en Nueva ventana 2D. Vea que ahora tiene abierta una Ventana Gráfica, que tiene su propio menú principal. 2- Marcando nuevamente en Ventana, abajo aparecen dos ventanas abiertas. Vuelva a la ventana de álgebra. A continuación marque Nueva ventana 3D. 3- Marcando nuevamente en Ventana, verá que tiene tres ventanas abiertas. Vuelva a la ventana de álgebra.
Observaciones Derive tiene predefinidos algunos modos de actuar. Por ejemplo: 1- Los nombres de las variables son simples, de una letra. Por ejemplo, es válido escribir A=ab, pero no es válido Area=ab, porque entiende A.r.e.a = a.b. Aunque existe la opción de declarar como variable una cadena alfa - numérica. 2- Los números decimales se escriben con formato inglés, es decir, con punto decimal y no coma. 3- Las funciones trigonométricas (al igual que otras elementales) se codifican sin necesidad de usar paréntesis. Ejemplo: sinx, sin embargo se debe escribir sin(kx).
Gráfica de funciones:
Representar gráficamente la función: EJEMPLO: Representar gráficamente la función:
Opción para editar una expresión
Una vez que teclee la expresión matemática que va a graficar, marque Sí y a continuación los pasos siguientes:
ó Para obtener la gráfica: Presione la opción Gráficos-2D en el menú despegable Ventana del Derive ó Presione sobre este ícono
Para obtener el gráfico de la función Esta es la pantalla gráfica del Derive Marque la opción Representar en la barra de herramientas del Derive ó Este ícono gráfico Para obtener el gráfico de la función
Gráfico de la función
Aproximación de raíces reales de polinomios.
Calcular las raíces del polinomio: EJEMPLO: Calcular las raíces del polinomio: x4 – 2x3 – 4x +1
x4 – 2x3 – 4x +1=0 x4 – 2x3 =– (– 4x +1) x4 – 2x3 =4x -1 Localización gráfica de las raíces del polinomio: x4 – 2x3 – 4x +1=0 x4 – 2x3 =– (– 4x +1) x4 – 2x3 =4x -1
g(x) = 4X - 1 f(x) = X4 - 2x3 f(x) g(x) Represente gráficamente las funciones: g(x) = 4X - 1 f(x) = X4 - 2x3 f(x) g(x)
Raíces del polinomio Como se observa, las raíces aproximadas del polinomio se encuentran en los intervalos: [0, 2] y [2, 4]
Opción para resolver numéricamente una ecuación
Raíz del polinomio en el intervalo [0, 2] Introduzca los valores de los extremos del intervalo considerado y marque la opción SIMPLIFICAR
Raíz del polinomio x4 – 2x3 – 4x +1 en el intervalo [ 0, 2 ]
Raíces del polinomio en el intervalo [2, 4] Introduzca los valores de los extremos del intervalo considerado y marque la opción SIMPLIFICAR
Raíz del polinomio x4 – 2x3 – 4x +1 en el intervalo [ 2, 4 ]
Representación gráfica en coordenadas polares.
EJEMPLO: Represente gráficamente en el sistema de coordenadas polares la función: r = 4sen
Escriba la ecuación en coordenadas polares en la opción Editar(Autor)
En la Ventana Gráfica del Derive realice la siguiente secuencia de pasos:
Al marcar la opción Coordenadas Polares, llene la siguiente caja de diálogos y marque la opción Sí para continuar.
Gráfico de la función
FIN