Descargar la presentación
La descarga está en progreso. Por favor, espere
1
1. La integral Gustavo Rocha
2
Objetivo del capítulo Distinguir a la diferencial como una función de dos variables, a la integral indefinida como una familia de funciones antiderivadas, a la integral definida como un número, resultado del límite de una suma infinita de términos y a la función integral como un proceso de acumulación; las cuatro vinculadas a través del teorema fundamental del cálculo, que explica por qué la integral definida requiere del cálculo de antiderivadas y por qué el problema de la recta tangente es el inverso del problema del área, y se resuelven por medio de procesos inversos, la derivación y la integración; realizar procedimientos diversos de ajuste del integrando para calcular su primitiva; y evaluar integrales definidas aplicando la regla de Barrow.
3
Contenido del capítulo
La integral indefinida Introducción a ecuaciones diferenciales El problema del área La integral definida Teorema fundamental del cálculo La diferencial Cálculo de primitivas directas y evaluación de integrales
4
1.1 La integral indefinida
Gustavo Rocha
5
Objetivos del tema Distinción de la integral indefinida como una familia de funciones antiderivadas. Reconocimiento de las reglas básicas de derivación como reglas básicas de integración. Reconocimiento de la diferencial de la función como integrando. Cálculo de integrales de funciones polinómicas y trigonométricas.
6
Contenido del tema Antiderivadas o primitivas. Funciones con la misma derivada. Antiderivada general. Antiderivada particular. Integral indefinida. Definiciones de integral indefinida. Derivación e integración como operaciones inversas. Elementos de la integral indefinida. Propiedades de linealidad de la integral indefinida. Las reglas básicas de derivación como reglas básicas de integración. Regla de las potencias. Regla generalizada de las potencias. Reglas de integración de funciones trigonométricas. La diferencial de la función como integrando. Cálculo de integrales de funciones polinómicas y trigonométricas.
7
Adivinanza
8
Adición - sustracción
9
Multiplicación - división
10
Potenciación – radicación
11
Operaciones matemáticas inversas
De la misma manera que la sustracción es la operación inversa de la adición, la división es la operación inversa de la multiplicación y la extracción de raíces es la operación inversa de la exponenciación, así la operación antiderivación es la operación inversa de la derivación.
12
Operaciones matemáticas inversas
Adición Multiplicación Potenciación Integración Sustracción División Radicación Derivación
13
Primitiva
14
Antiderivadas o primitivas
Si la derivada de F es igual a f en el intervalo I: entonces F es una antiderivada o primitiva de f en el intervalo I : Por ejemplo: y se dice que es una antiderivada o primitiva de en todo el dominio de x.
15
Antiderivadas o primitivas
Encontrar una primitiva para las siguientes funciones: .
16
Función primitiva – función derivada
17
Función primitiva – función derivada
18
Función primitiva – función derivada
19
Función primitiva – función derivada
20
Derivada en un punto genérico
21
Derivada de una función
Encontrar la derivada de las siguientes funciones: .
22
Funciones con la misma derivada
Si dos funciones F y G tienen la misma derivada: entonces las funciones F y G difieren en una constante: Por ejemplo: F y G difieren en 2, que es una constante.
23
Funciones con la misma derivada
24
Antiderivada general Si una función tiene una primitiva, entonces tiene infinitas primitivas, que se diferencian entre sí en una constante. La antiderivada general es la familia constituida por un número infinito de primitivas.
25
Antiderivada general
26
Antiderivada general Encontrar la antiderivada general de las siguientes funciones: .
27
Antiderivar = Integrar
= Calcular primitivas
28
Familia de antiderivadas
Integral indefinida Una función f tiene una familia de funciones antiderivadas, denominada antiderivada general o integral indefinida, y cada miembro de esta familia se obtiene de cualquiera de ellos sumándole una constante adecuada. En notación de Leibniz: Las gráficas de cualesquiera antiderivadas de f son traslación vertical una de la otra. Familia de antiderivadas
29
Integral indefinida
30
Integral indefinida Obtener las siguientes integrales indefinidas: .
31
Antiderivada particular
Una función antiderivada particular no es una integral indefinida, sino un solo miembro de la familia, aquella cuya gráfica tiene ordenada 5. Por ejemplo: x y 5
32
Definiciones de integral indefinida
33
Definiciones de integral indefinida
En notación de derivadas: En notación de diferenciales: En notación de integrales: La operación de hallar todas las soluciones de la ecuación diferencial se denomina integración indefinida o antiderivación.
34
Derivación e integración como operaciones inversas
La integración es la inversa de la derivación: La derivación es la inversa de la integración: Para establecer cualquier resultado de la forma: basta demostrar que
35
Elementos de la integral indefinida
5. Primitiva general 3. Diferencial 1. Integral 4. Variable de integración 6. Constante de integración 2. Integrando
36
Elementos de la integral indefinida
8. Diferencial de F(x) 7. Operador integral
37
Reglas de derivación – reglas de integración
A cada regla de derivación le corresponde una regla de integración.
38
Propiedades de linealidad de la integral indefinida
El operador integral es lineal. La integral de una constante por una función es igual a la constante por la integral de la función. La integral de la suma es la suma de las integrales La integral de la diferencia es la diferencia de las integrales
39
Reglas de derivación – reglas de integración
Integración por partes Integración por partes Integración por sustitución
40
Reglas de derivación – reglas de integración
41
La regla de las potencias
Con relación a la regla de las potencias ¿Por qué no funciona para ¿Acaso funciona para ¿Qué sucede cuando ¿Cuál es la condición cuando
42
La regla de las potencias
queda pendiente para el tema 2 porque la función no está definida para
43
Integrando funciones polinómicas
44
Regla generalizada de las potencias
La fórmula generalizada es muy similar a la fórmula simple pero su diferencia no es trivial, porque u es función de x: Definición de integral indefinida en lenguaje de diferenciales Cálculo de la diferencial de la función Regla de la cadena
45
Regla generalizada de las potencias
Ejemplos: No se puede aplicar directamente la regla generalizada de las potencia, porque falta la diferencial. Aquí sería necesario desarrollar el cubo del binomio, y después integrar.
46
Regla generalizada de las potencias
Utilizando la regla de las potencias, calcule: .
47
Reglas de integración de funciones trigonométricas
Notación de diferenciales Notación de integrales
48
Reglas de integración de funciones trigonométricas
Ejemplos: No se puede aplicar directamente la regla del seno, porque falta la diferencial. Esta primitiva existe, pero no es una función elemental. No se puede aplicar directamente la regla del seno, porque falta la diferencial. Esta primitiva tampoco es función elemental.
49
Integrando funciones trigonométricas
50
Reglas de integración de funciones trigonométricas
Utilizando reglas básicas de integración, calcule: .
51
Distinción obvia Para todos debe quedar muy claro que
es la aplicación de la función seno al cuadrado de la variable x. es el cuadrado de la función seno de x.
52
La regla generalizada de las potencias aplicada a funciones trigonométricas
La regla de las potencias no solo es aplicable a funciones algebraicas y polinomios. Su uso se extiende a cualquier función, si está presente su correspondiente diferencial. Ejemplos: Dos resultados aparentemente diferentes para una integral
53
Integrando funciones trigonométricas con potencias
54
Proceso de integración
Integral original Reescribirla Conforme a una regla de integración Verificar la correspondencia del integrando con la diferencial Integrar: lo que se integra es el integrando Simplificar Utilizar todos los recursos del álgebra Considerar solo una constante de integración Verificar: Siempre es posible comprobar por derivación
55
La regla generalizada de las potencias aplicada a funciones trigonométricas
Utilizando la regla generalizada de las potencias, calcule: .
56
Cálculo de primitivas mediante reglas básicas de integración
Obtener las siguientes integrales indefinidas, usando reglas básicas de integración: .
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.