La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

La notación científica (o notación índice estándar) es una manera rápida de representar un número utilizando potencias de base diez. Esta notación se.

Presentaciones similares


Presentación del tema: "La notación científica (o notación índice estándar) es una manera rápida de representar un número utilizando potencias de base diez. Esta notación se."— Transcripción de la presentación:

1

2 La notación científica (o notación índice estándar) es una manera rápida de representar un número utilizando potencias de base diez. Esta notación se utiliza para poder expresar muy fácilmente números muy grandes o muy pequeños.

3 El primer intento de representar números demasiado grandes fue emprendido por el matemático y filósofo griego Arquímedes, descrito en su obra El contador de Arenaen el siglo III a. C. Ideó un sistema de representación numérica para estimar cuántos granos de arena existían en el universo. El número estimado por él era de granos. Nótese la coincidencia del exponente con el número de casilleros del ajedrez sabiendo que para valores positivos, el exponente es n-1 donde n es el número de dígitos, siendo la última casilla la Nº 64 el exponente sería 63 (hay un antiguo cuento del tablero de ajedrez en que al último casillero le corresponde -2 elevado a la 63- granos).A través de la notación científica fue concebido el modelo de representación de los números reales mediante coma flotante. Esa idea fue propuesta por Leonardo Torres Quevedo (1914), Konrad Zuse (1936) y George Robert Stibitz (1939).

4 10 0 = = = = = = = = = = = = =

5 10 elevado a una potencia entera negativa –n es igual a 1/10 n o, equivalentemente 0, (n–1 ceros) 1 10 –1 = 1/10 = 0,1 10 –2 = 1/100 = 0,01 10 –3 = 1/1 000 = 0, –9 = 1/ = 0, = 1/ = 0, = 1/ = 0, = 1/ = 0, Por tanto, un número como: puede ser escrito como 1,56234×10 29, y un número pequeño como 0, kg (masa de un electrón) puede ser escrito como 9,10939×10 –31 kg.electrón O bien 910,939×10 -33, 91093,9×10 -35, 0,910939×10 -30

6

7 Para multiplicar cantidades escritas en notación científica se multiplican los coeficientes y se suman los exponentes. Ejemplo: (4×10 12 )×(2×10 5 ) =8×10 17

8 Se eleva el coeficiente a la potencia y se multiplican los exponentes. Ejemplo: (3×10 6 ) 2 = 9 ×10 12.

9 Prefijos del Sistema Internacional Los prefijos del SI para nombrar a los múltiplos y submúltiplos de cualquier unidad del Sistema Internacional (SI), ya sean unidades básicas o derivadas. Estos prefijos se anteponen al nombre de la unidad para indicar el múltiplo o submúltiplo decimal de la misma; del mismo modo, los símbolos de los prefijos se anteponen a los símbolos de las unidades. Los prefijos pertenecientes al SI los fija oficialmente la Oficina Internacional de Pesos y Medidas, de acuerdo con el cuadro siguiente:

10 1000 n 10 n PrefijoSímboloEscala cortaEscala larga Equivalencia deci mal en los Prefijos del Sistema Internacionaldeci mal Asignación yottaYSeptillónCuatrillón zettaZSextillónMil trillones exaEQuintillónTrillón petaPCuatrillónMil billones teraTTrillónBillón gigaGBillón Mil millones / Millardo

11 megaMMillón kilokMil / Millar / hectohCien / Centena / decadaDiez / Decena ningunoUno / Unidad / decidDécimo0, / centicCentésimo0, milimMilésimo0, microµMillonésimo0, nanonBillonésimo Milmillonésim o 0, picopTrillonésimoBillonésimo 0, femtof Cuatrillonésim o Milbillonésimo 0, attoa Quintillonésim o Trillonésimo 0, zeptozSextillonésimoMiltrillonésimo 0, yoctoySeptillonésimo Cuatrillonésim o 0,

12 Las reglas del redondeo se aplican al decimal situado en la siguiente posición al número de decimales que se quiere transformar, es decir, si tenemos un número de 3 decimales y queremos redondear a la centésima, se aplicará las reglas de redondeo: Dígito menor que 5: Si el siguiente decimal es menor que 5, el anterior no se modifica. Ejemplo: 12,612. Redondeando a 2 decimales se debe tener en cuenta el tercer decimal: 12,612 12,61. Dígito mayor o igual que 5: Si el siguiente decimal es mayor o igual que 5, el anterior se incrementa en una unidad. Ejemplo: 12,618. Redondeando a 2 decimales se debe tener en cuenta el tercer decimal: 12,618 12,62 Ejemplo: 2,3571 redondeado a la centésima es 2,36, debido a que 2,3571 está más cerca de 2.36 que de 2.35.

13 a) 4,123 Regla 1: Si el dígito a la derecha del último requerido es menor que 5, se deja el dígito precedente intacto. Respuesta: 4,12 b) 8,627 Regla 2: Si el dígito a la derecha del último requerido es mayor que 5, se aumenta una unidad el dígito precedente. Respuesta: 8,63 c) 9,4252 Regla 3: Si el dígito a la derecha del último requerido es un 5 seguido de cualquier dígito diferente de cero, se aumenta una unidad el dígito precedente. Respuesta: 9,43 d) 7,385 Regla 4: Si el dígito a la derecha del último requerido es un 5 no seguido de dígitos, se deja el dígito precedente sin cambiar si es par... Respuesta: 7,38 e) 6,275 Regla 4: Si el dígito a la derecha del último requerido es un 5 no seguido de dígitos..., se aumenta el dígito precedente una unidad si es impar. Respuesta: 6,28

14 Concepto: Son las cifras confiables en una expresión numérica. El numero de cifras significativas dependen de la precisión del aparato con el que se mide una cantidad.

15 Las cifras significativas es el número de dígitos confiables más el dígito dudoso; los ceros a la izquierda no son significativos y solo sirven para indicar el lugar de la coma. Cuando utilizamos los valores de las medidas para realizar operaciones aritméticas con ellas, el resultado debe escribirse de acuerdo con las cifras significativas que contienen los valores de origen. Al dejar fuera las cifras que no son significativas, debe considerar que si la primera de estas es igual o mayor a 5, la ultima cifra significativa se incrementa en 1.


Descargar ppt "La notación científica (o notación índice estándar) es una manera rápida de representar un número utilizando potencias de base diez. Esta notación se."

Presentaciones similares


Anuncios Google