La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Clase 9 TRANSFORAMCIONES ORTOGONALES Y UNITARIAS.

Presentaciones similares


Presentación del tema: "Clase 9 TRANSFORAMCIONES ORTOGONALES Y UNITARIAS."— Transcripción de la presentación:

1 Clase 9 TRANSFORAMCIONES ORTOGONALES Y UNITARIAS

2 TRANSFORMACIONES UNITARIAS 1-1 Def: Una transformación T es UNITARIA cuando T preserva el producto interno, esto es: = para todo v,w, en V. En el caso particular en que el cuerpo son los reales decimos que T es ortogonal.

3 TRANSFORMACIONES UNITARIAS 1-2 Proposición: Sea V un espacio vectorial de dimensión finita sobre K y T un operador lineal. Son equivalentes: (a) T es unitaria (T conserva el producto interno). (b) T conserva la norma(||T(v)||=||v|| para todo v en V). (c) T lleva bases ortonormales en bases ortonormales.

4 TRANSFORMACIONES UNITARIAS 1-3 (d) T lleva una base ortonormal en otra base ortonormal de V.

5 MATRICES ORTOGONALES Y UNITARIAS 2-1

6 MATRICES ORTOGONALES Y UNITARIAS 2-2

7 MATRICES Y TRANSFORMACIONES ORTOGONALES Y UNITARIAS 3-1

8 MATRICES Y TRANSFORMACIONES ORTOGONALES Y UNITARIAS 3-2

9 TEOREMA ESPECTRAL PARA T. UNITARIAS Sea V un espacio vectorial complejo (K=C) de dimensión finita. Si T es unitaria Existe una base ORTONORMAL de V formada por vectores propios de T. Existe también una especie de recíproco:

10 Proposición: Sea V un espacio vectorial Complejo (K=C) de dimensión finita. Si existe una base ortonormal de V formada por vectores propios de T y los valores propios de T tienen módulo 1 T es unitaria.


Descargar ppt "Clase 9 TRANSFORAMCIONES ORTOGONALES Y UNITARIAS."

Presentaciones similares


Anuncios Google