Los Números Racionales

Slides:



Advertisements
Presentaciones similares
Álgebra 2010 Clase N° 2 Conjuntos numéricos II
Advertisements

Año 2009 MATEMATICA Todo lo visto en 2º Año … Autoras: Abba - Romero.
Las fracciones Los términos de una fracción son el numerador y el denominador. El denominador indica el número de partes iguales en que se divide la unidad.
MATEMÁTICAS 8vo BÁSICO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC
Mapa conceptual: Números reales
NÚMEROS ENTEROS, NUMEROS NATURALES, MÚLTIPLOS Y DIVISORES
POTENCIAS, RAICES, FRACCIONES Y DECIMALES
FRACCIONES Edilberto Bruno comenzar.
MATEMÁTICAS TEMAS: 6-7.
Números Racionales y Potencias
Números Complejos Prof. Isaías Correa M..
Desigualdades e Inecuaciones
TEMA Nº 1 Conjuntos numéricos.
Módulo 10 Multiplicación y división de expresiones racionales
OPERACIONES EN Q CUARTO PERIODO
MATEMÁTICA 2013 Unidad 0 Repaso.
Andy Jiménez Yenny Ramírez Candelario Araujo Camila Rivera
UNIDAD 1 (2da parte) 6to básico Johana Herrera Astargo
LAS fracciones Séptimo grado.
Profesora: Isabel López C.
MATEMÁTICA BÁSICA CERO
Expresiones Racionales
ESPAD III * TC 2 FRACCIONES.
FRACCIONES Una fracción es una expresión en la que a y b son números enteros llamados numerador, a, y denominador, b. Ejemplo: Tomamos 3 partes.
TEMA 8 OPERACIONES CON FRACCIONES
Notación decimal de un racional
Radicales Preparado por Profa.Carmen Batiz UGHS
Los Conjuntos Numéricos
Operatoria en Q Gonzalo Maureira León..
Matemáticas Aplicadas CS I
SUBCONJUNTOS DE LOS NÚMEROS CARDINALES
NÚMEROS REALES.
Sesión 7 Tema: Operatoria con raíces y logaritmos.
NÚMEROS RACIONALES Día 01 * 1º BAD CS
Los Números Racionales
Ejercicios para la prueba
Clase Operatoria.
LOS NUMEROS NATURALES Los números naturales son el conjunto de los números enteros positivos, y como positivo todo número que se ubica a la derecha del.
OPERATORIA DE LOS NÚMEROS RACIONALES
CONCEPTOS BÁSICOS: Números Racionales
RAÍCES PROFESORAS: Pía Azócar Farías Isabel López Castillo.
Las fracciones Los términos de una fracción son el numerador y el denominador. El denominador indica el número de partes iguales en que se divide la unidad.
Fracciones y decimales
@ Angel Prieto BenitoApuntes de Matemáticas 2º ESO1 Tema 3.3 OPERACIONES CON FRACCIONES.
Operaciones aritméticas
ARITMETICA.
LIC. LUIS GONZALO PULGARÍN R .
NÚMEROS RACIONALES Actualización junio 2010 Prof: Guiomar Mora de Reyes                                 
NÚMEROS REALES Tema 1 * 4º ESO Opc Angel Prieto Benito
Operatoria en racionales
Números fraccionarios
NÚMEROS REALES.
Ejercicio: π 4 Los Números Enteros …… 5 Valor Absoluto de un Número |-5 | = |+7| = | 0 | = |-15| = | 42 | = “El valor absoluto de un número,
Números racionales Lorenzo Contreras Garduño Ago. 2015
CONJUNTOS NUMÉRICOS. 1.Números Naturales 1.1 Consecutividad numérica 1.2 Paridad e imparidad 1.3 Números primos 1.4 Múltiplos y divisores 1.5 Mínimo Común.
1 Números racionales El conjunto Q de los números racionales
1 Índice del libro Conjuntos numéricos 1.Números naturalesNúmeros naturales 2.Números enterosNúmeros enteros 3.Números racionalesNúmeros.
IN = Naturales INo = Cardinales Z = Enteros Q = Racionales Q* = Irracionales IR = Reales I = Imaginarios C = Complejos.
JUGANDO A TRABAJAR CON LOS DECIMALES. ¿Qué es un número decimal?  Son aquellos números que poseen una parte decimal.  Se reconocen por la presencia.
Los Números Racionales Prof. Javier Sandoval. Objetivos: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión,
1 Índice del libro Conjuntos numéricos: N, Z y Q 1.Introducción a N, Z y QIntroducción a N, Z y Q 2.Tipos de fraccionesTipos de fracciones.
Números y Fracciones 1.Los números naturales y los enterosLos números naturales y los enteros 2.Números primosNúmeros primos 3.Máximo común divisor y mínimo.
PPTCEG019EM31-A16V1 Operatoria en los racionales EM-31.
MATEMÁTICA Propiedad Intelectual Cpech Clase Resolución de problemas en los números racionales. PPTC3M019M311-A16V1.
1 Los números reales Los números racionales Los números irracionales
LOS NÚMEROS ¿Existe algún número que multiplicado por 2 sea 1? ENTEROS
Los Números Racionales
TEMA Nº 1 Conjuntos numéricos. Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto.
Conjuntos numéricos. objetivos: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión. recordar la operatoria básica.
TEMA Nº 1 Conjuntos numéricos. Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto.
Transcripción de la presentación:

Los Números Racionales Prof. Isaías Correa Marín

Objetivos: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales y en el ámbito cotidiano. Aplicar la operatoria básica en los números naturales y enteros.

Objetivos: Aplicar las operaciones básicas en los números racionales. Resolver problemas que involucren operaciones con números enteros, decimales y fracciones. Reconocer regularidades numéricas (secuencias).

Contenidos Números racionales (Q) 2. Números irracionales (Q*) 1.1 Propiedades de los racionales 1.2 Operatoria en los racionales 1.3 Transformaciones de números racionales 1.4 Comparación de fracciones 1.5 Secuencia numérica 2. Números irracionales (Q*) 3. Números reales ( IR ) 4. Números imaginarios ( II ) 5. Números complejos ( C )

1.Números Racionales (Q) Es un conjunto infinito, ordenado y denso, donde todos los números se pueden escribir como fracción, es decir: a b / a y b son enteros, y b es distinto de cero Q = a: numerador y b: denominador Ejemplos: 2; 17; 0; -6; -45; -2; 7 0,489; 2,18; -0,647 -1; 8 14; 3 15, NO es racional

Todo número entero es racional. Por ejemplo: 3 es Natural (3 IN), 3 es Cardinal (3 IN0), 3 es Entero (3 Z), y como 3 = , 3 es racional (3 Q). 3 1 IN IN0 Z Q

Diagrama representativo:

1.1 Propiedades de los racionales Las fracciones se pueden clasificar en: Fracción propia, donde el numerador es menor que el denominador. Fracción impropia, donde el numerador es mayor que el denominador. Fracción Mixta, está compuesta de una parte entera y de otra fraccionaria. Amplificar y simplificar fracciones Amplificar una fracción, significa multiplicar, tanto el numerador como el denominador por un mismo número. Ejemplo: Al amplificar la fracción por 6 resulta: 2 3 2∙ 3∙ 6 12 18 =

Inverso multiplicativo o recíproco de una fracción Simplificar una fracción, significa dividir, tanto el numerador como el denominador por un mismo número. Ejemplo: Al simplificar la fracción por 3 resulta: 27 45 27 : 45 : 3 9 15 = Inverso multiplicativo o recíproco de una fracción Ejemplo: El inverso multiplicativo, o recíproco de 2 9 9 2 es:

1.2 Operatoria en los racionales Suma y resta Ejemplos: 1. Si los denominadores son iguales: 4 15 + 7 11 15 4 15 - 7 -3 15 = y = 2. Si uno de los denominadores es múltiplo del otro: 2 15 + 7 45 = 2∙3 + 7∙1 45 6 + 7 45 13 45 = =

3. Si los denominadores son primos entre sí: 4 5 + 7 8 = 4∙8 + 5∙7 40 32 + 35 40 67 40 = = 4. Aplicando mínimo común múltiplo (m.c.m.): 5 12 + 7 18 = 5∙3 + 7∙2 36 15 + 14 36 29 36 = =

8 Multiplicación: División: Número Mixto: Ejemplo: -4 5 7 8 = ∙ -28 40 -32 35 = 32 35 - Número Mixto: Ejemplo: 3 5 = 8∙5 + 3 5 = 43 5 8

1.3 Transformación de números racionales De fracción a decimal: Se divide el numerador por el denominador. Ejemplo: 7 4 = 1,75 De decimal finito a fracción: El numerador corresponde al número sin comas, y el denominador es una potencia de 10 que depende del número de decimales que tenga el número. Ejemplo: 1,75 = 100 175 = 25∙7 25∙4 = 7 4

De un número decimal periódico a fracción: 1. El numerador de la fracción es la diferencia entre el número decimal completo, sin la coma, y la parte entera. 2. El denominador está formado por tantos nueves (9), como cifras tenga el período. Ejemplo 1: 2,35 = 235 – 2 = 233 99 Ejemplo 2: 0,376 = 376 – 0 = 376 999 Nota: Se llama “período” al conjunto de dígitos que se repite indefinidamente.

De un número decimal semi periódico a fracción: 1. El numerador de la fracción corresponde a la diferencia entre el número decimal completo, sin la coma; y la parte entera incluyendo las cifras del ante período. 2. El denominador queda formado por tantos nueves (9), como cifras tenga el período, y tantos ceros (0), como cifras tenga el ante período. Ejemplo: 3,21 = 321-32 = 289 90 Nota: Se llama “ante período” a los números que hay entre la coma decimal, y el período.

1.4 Comparación de fracciones Multiplicación cruzada: Ejemplo: Al comparar (Multiplicando cruzado) 13 15 9 10 y 13 ∙ 10 y 15 ∙ 9 130 y 135 13 15 9 10 Como 130 < 135, entonces: <

Igualando denominadores: Ejemplo: 13 15 7 12 Al comparar y (Igualando denominadores) 13∙4 15∙4 7∙5 12∙5 y 52 60 35 60 y Como 52 > 35, entonces 13 15 7 12 >

Transformar a decimal: Ejemplo: 13 15 7 12 Al comparar (Transformando a decimal) y 13 15 = 0,86666666… 7 12 = 0,58333333… 13 15 7 12 Como 0,86 > 0,583 , entonces >

Igualando Numeradores: Ejemplo: Al comparar (Multiplicamos ambos numeradores por un factor para obtener el m.c.m. entre 10 y 13 en este caso 130) 10 3 13 4 y 10·13 3·13 13·10 4·10 y 130 39 40 y 10 3 13 4 es mayor que Por lo tanto,

1.5 Secuencia Numérica Ejemplo: 6 , 5 16 , 5 26 , 5 36 , ... 5 6 , 5 16 , 5 26 , 5 36 , ... 5 En la secuencia: ¿Qué número tendríamos que sumar a para obtener el 7° término ? 1 , 5 Respuesta: De acuerdo a las características de la secuencia, el 7° término es 66 . 5 Tendríamos que sumar a para obtener el 7° término. 65 5 1 , Es decir: 65 = 13 5

Lo que nos permitiría saber, por ejemplo, Observación: La secuencia anterior también se puede analizar de la siguiente manera: 1 + 1 , 5 1 + 3 , 5 1 + 5 , 5 1 + 7 , 5 ... , 1 + 13… 5 1° 2° 3° 4° ... , 7°… Lo que nos permitiría saber, por ejemplo, ¿cuál es el valor del n-ésimo término de la secuencia? Respuesta: Es , más un número impar, lo que se expresa como: 1 5 1 + (2n - 1) 5 (Con n = posición del término)

2. Números Irracionales (Q*) Son aquellos que NO se pueden escribir como una fracción (decimales infinitos NO periódicos). Q* = Q U Q*=

3. Números Reales (IR) IR = Q U Q* IN IN0 Z Q IR Es el conjunto formado por la unión entre los números racionales y los números irracionales. IR = Q U Q* Ejemplos: 3, -89, -2; 7 2,18; 23,491002 Diagrama representativo: IN IN0 Z Q IR Q* IR

4. Números imaginarios (II) Todos aquellos números que NO son reales, son imaginarios. IR U II = O Ejemplo: Raíces de índice par y parte subradical negativa:

5. Números complejos (C) IR x II = C IN IN0 Z Q IR C Es el conjunto formado por el producto cartesiano entre los números reales y los números imaginarios. Diagrama representativo: IR x II = C IN IN0 Z Q IR C II C

Sinteticemos en el siguiente mapa conceptual lo que hemos aprendido

Decimal semiperiódico Conjunto Q Propiedades y comparación Operatoria Transformaciones Decimal finito a fracción Decimal periódico a Decimal semiperiódico a Adición Sustracción Multiplicación División Simplificación Amplificación Fracciones equivalentes

Conjunto C Conjunto IR Conjunto II Conjunto Q Conjunto Q* IR x II Q U Q* = IR IR ∩ II = O Conjunto Q Conjunto Q* Fracciones Decimales Decimales infinitos NO periódicos Impropia Propia Número mixto Finitos Infinitos periódicos Infinitos semiperiódicos