Matemáticas Acceso a CFGS

Slides:



Advertisements
Presentaciones similares
Apuntes 1º Bachillerato CT
Advertisements

Apuntes 1º Bachillerato CT
DERIVADAS.
Determina la TVI de f(x) = x2 – 2x en el punto x0 =2, x0 = 1, x0 = 0
TRASLADO, INVERSIÓN Y DILATACIÓN
Traslación de funciones
Función Escalón ó mayor Entero
Derivadas. Técnicas de derivación.
Matemáticas Acceso a CFGS
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 ÁNGULOS ENTRE RECTAS Bloque II * Tema 069.
Matemáticas Acceso a CFGS
Tema 10 * Integrales DEFINIDAS
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 EJERCICIOS SOBRE EL MÉTODO DE GAUSS Bloque I * Tema 020.
Si existe TVI(a), lo denominamos DERIVADA DE f(x) EN EL PUNTO a, y se denota por f ’(a)
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 DISCONTINUIDAD DE FUNCIONES Bloque III * Tema 118.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 FUNCIÓN DE PROPORCIONALIDAD INVERSA Bloque III * Tema 104.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 Bloque I * Tema 012 ECUACIONES RADICALES.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 INTERÉS SIMPLE Bloque I * Tema 036.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 CONTINUIDAD DE FUNCIONES Bloque III * Tema 117.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 Bloque I * Tema 028 Determinantes.
RAZONES TRIGONOMÉTRICAS
Matemáticas Acceso a CFGS
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 POTENCIAS Bloque I * Tema 006.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 Bloque I * Tema 013 ECUACIONES LOGARÍTMICAS.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 DISTRIBUCIÓN NORMAL Bloque IV * Tema 178.
Bloque I * Tema 011 ECUACIONES Angel Prieto Benito
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 Bloque II * Tema 054 FÓRMULAS.
Matemáticas Acceso a CFGS
Diagramas de dispersión (Nube de puntos)
Matemáticas Acceso a CFGS
Matemáticas Acceso a CFGS
Matemáticas Acceso a CFGS
ECUACIONES EXPONENCIALES
Funciones trigonométricas
REPRESENTACIÓN DE NÚMEROS REALES
DERIVADAS DE OPERACIONES
Matemáticas Acceso a CFGS
DÍA 13 * 1º BAD CT ECUACIONES EXPONENCIALES Y LOGARITMICAS
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 SISTEMA EUCLÍDEO Bloque II * Tema 061.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 INTEGRALES RACIONALES PACFGS * TEMA 133.
FUNCIONES.
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 1 * 4º ESO Opc B NÚMEROS REALES.
Matemáticas 1º Bachillerato CT
INTEGRALES PARTE 2.
Apuntes 2º Bachillerato C.S.
TABLA DERIVADAS DÍA 45 * 1º BAD CT.
Matemáticas 2º Bachillerato C.T.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 Bloque II * Tema 057 TEOREMAS DEL SENO Y DEL COSENO.
Matemáticas 2º Bachillerato C.S.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema VII Derivadas.
FUNCIÓN EXPONENCIAL y FUNCIÓN LOGARITMICA
Apuntes 2º Bachillerato C.T.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 Tema 1 NÚMEROS REALES.
DERIVADAS DE OPERACIONES DÍA 44 * 1º BAD CT
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 3 * 4º ESO Opc B ECUACIONES Y SISTEMAS.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 2 ECUACIONES Y SISTEMAS.
CÁLCULO DE DERIVADAS DÍA 42 * 1º BAD CS
CÁLCULO DE DERIVADAS DÍA 46 * 1º BAD CT
Matemáticas Accso a CFGS
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 1 NÚMEROS REALES.
PROPIEDADES DE LOS DETERMINANTES
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 TEMA 2 MATEMÁTICA FINANCIERA.
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 1 * 4º ESO Opc B NÚMEROS REALES.
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 1 * 4º ESO Opc B NÚMEROS REALES.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 U.D. 10 * 1º BCT TRIGONOMETRÍA.
Matemáticas Aplicadas CS I
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 U.D. 2 MATEMÁTICA FINANCIERA.
(multiplicar por el exponente y disminuir el exponente inicial en uno)
Apuntes 1º Bachillerato CT
INTEGRALES U.D. 7 * 2º Angel Prieto Benito
Transcripción de la presentación:

Matemáticas Acceso a CFGS TABLA DERIVADAS Bloque III * Tema 123 @ Angel Prieto Benito Matemáticas Acceso a CFGS

DERIVADAS POLINÓMICAS DERIVADA DE UNA CONSTANTE f(x) = k  f’(x) = 0 Ejemplos y = 4  y’=0 y = -√3  y’=0 y = (e – 2) / π  y’=0 DERIVADAS POLINÓMICAS n n - 1 f (x) = x  f ‘ (x) = n. x y = x4  y’= 4. x3 y = -x7  y’= -7. x6 y = x42  y’= 42. x41 @ Angel Prieto Benito Matemáticas Acceso a CFGS

Matemáticas Acceso a CFGS OTRAS DERIVADAS DERIVADA DE LA INVERSA f(x) = 1/x  f’(x) = -1/ x2 DERIVADA DE LA RAIZ f (x) = √x  f ‘ (x) = 1 / 2.√x También se obtendría como polinómica f (x) = √x  f (x) = x1/2  f’(x) = (1/2). x(1/2 – 1) DERIVADA DE LA EXPONENCIAL f(x) = ex  f’(x) = ex DERIVADA DEL LOGARITMO NEPERIANO f(x) = ln x  f’(x) = 1 / x @ Angel Prieto Benito Matemáticas Acceso a CFGS

DERIVADAS TRIGONOMÉTRICAS DERIVADA DE FUNCIONES TRIGONOMÉTRICAS y = sen x  y ‘ = cos x y = cos x  y ‘ = - sen x y = tg x  y ‘ = 1+tg2 x = 1 / cos2 x También se obtendría como división de funciones y = tg x = sen x / cos x y’ = [cos x. cos x – sen x . (-sen x)] / cos2 x y’ = [cos2 x + sen2 x] / cos2 x = 1 / cos2 x DERIVADA DE F. TRIGONOMÉTRICAS INVERSAS y = arcsen x  y ‘ = 1 / √(1 – x2) y = arccos x  y ‘ = – 1 / √(1 – x2) y = arctg x  y ‘ = 1 / (1 + x2) @ Angel Prieto Benito Matemáticas Acceso a CFGS

Matemáticas Acceso a CFGS DERIVADAS DE LA SUMA Sea y = f(x)+g(x) y’ = f ’(x) + g ‘(x) Ejemplos: y = x3 + x  y’ = 3.x2 + 1 y = x5 – x3  y’ = 5.x4 – 3.x2 y = ex + x4  y’ = ex + 4.x3 y = x3 + 1/x  y’ = 3.x2 – 1/x2 y = x + √x – 3  y’ = 1 + 1/(2.√x) y = x2 + lnx  y’ = 2.x + 1/x @ Angel Prieto Benito Matemáticas Acceso a CFGS

Matemáticas Acceso a CFGS DERIVADAS DE LA SUMA Sea y = f(x)+g(x) y’ = f ’(x) + g ‘(x) Ejemplos: y = x2 + lnx  y’ = 2.x + 1/x y = ex – ln x + √e  y’ = ex – 1/x y = x + sen x  y’ = 1 + cos x y = x3 – cos x  y’ = 3.x2 + sen x y = arctg x + tg x  y’ = 1 / (1 + x2) + 1+tg2 x y = √x – arc sen x  y’ = 1/(2√x) – 1/√(1 – x2 ) @ Angel Prieto Benito Matemáticas Acceso a CFGS

DERIVADAS DEL PRODUCTO Sea y = f(x). g(x) y ’ = f ‘(x) . g(x) + f(x) . g ’(x) Ejemplos: y = ex . x4  y’ = ex x4 + ex 4x3 y = x3 . 1/x  y’ = 3.x2 . 1/x + x3 .(-1/x2 ) = 3x – x = 2x y = x . √x  y’ = √x + x /(2.√x) y = x2 .lnx  y’ = 2.x.lnx + x2 1/x = 2.x.lnx + x y = sen x . √x  y’ = cos x. √x + sen x. 1/(2.√x) y = cos x.lnx  y’ = - sen x. lnx + cos x. 1/x @ Angel Prieto Benito Matemáticas Acceso a CFGS

DERIVADAS DE CONSTANTE POR FUNCIÓN Sea y = k.f(x) y ' = k. f ‘(x) Ejemplos: y = 4x3  y’ = 12.x2 y = – 5x7  y’ = – 35.x6 y = 5.ex + 2.x4  y’ = 5.ex + 8.x3 y = 7.x3 + 5/x  y’ = 21.x2 – 5/x2 y = 3x + 7√x – e  y’ = 3 + 7/(2.√x) y = - 3.x2 + 5.lnx  y’ = - 6.x + 5/x @ Angel Prieto Benito Matemáticas Acceso a CFGS

DERIVADAS DE CONSTANTE POR FUNCIÓN Sea y = k.f(x) y ' = k. f ‘(x) Ejemplos: y = 9x2 + 4lnx  y’ = 18.x + 4/x y = 3ex – a.ln x + √e  y’ = 3ex – a/x y = 7x – 2sen x  y’ = 7 – 2 cos x y = 8.x3 – e.cos x  y’ = 24.x2 + e.sen x y = 3.arctg x + 5.tg x  y’ = 3 / (1 + x2) + 5.(1+tg2 x) y = 21.√x – 4.arc sen x  y’ = 21/(2√x) – 4/√(1 – x2 ) @ Angel Prieto Benito Matemáticas Acceso a CFGS

DERIVADAS DEL COCIENTE Sea y = g(x) / f(x) g ‘(x). f (x) – g (x). f ‘(x) y ‘ = ----------------------------------- f 2 (x) Ejemplos: y = 2ex / x4  y’ = (2ex x4 – 2ex 4x3 ) / x8 y = x3 / (x – 1)  y’ = (3.x2 (x – 1) – x3 .1) / (x – 1)2 y = (x + 3) / √x  y’ = (1. √x – (x + 3). 1/(2.√x)) / x y = x2 / (ex + x)  y’ = (2.x.(ex + x) – x2 . (ex + 1)) / (ex + x)2 y = (x + sen x) / cos x  y’ =((1+ cos x).cos x – (x + sen x).(- sen x)) / cos2 x @ Angel Prieto Benito Matemáticas Acceso a CFGS