MÓDULO MATEMÁTICA Y SU ENSEÑANZA Lic Martha I. Guggisberg.

Slides:



Advertisements
Presentaciones similares
NAP Cuadernos para el aula
Advertisements

PLANIFICACIÓN ESCOLAR
CONCEPTOS BÁSICOS DE LA TEORÍA DE SITUACIONES DIDÁCTICAS
ESTUDIAR MATEMÁTICAS EN EL AULA 3º JORNADA - 29 DE JUNIO
SistematizaciÓn DE EXPERIENCIAS.
EVALUACIÓN.
LAS PÁCTICAS PROFESIONALES COORDINADOR: LIC. OSCAR A. BONILLA.
COMPETENCIAS Y METODOLOGÍA
APRENDIZAJE ENTRE PARES
Como modalidad didáctica del campo de formación técnico específica
Competencias básicas y modelo de Centro
Reforma Curricular de la Educación Normal
DISEÑOS CURRICULARES PUEDE ADECUARSE AL CONTEXTO
ELABORACIÓN DE PROYECTOS
Dispositivo Didáctico-Pedagógico
PLANIFICACIÓN CURRICULAR
ANLISIS DE SITUACIONES DIDACTICAS EN MATEMATICA
LAS CARAS DE LA EVALUACION
LA ENSEÑANZA DE CONCEPTOS Y PROCEDIMIENTOS
La organización de los contenidos
CONSTRUCTOS TEORICOS DE LA DIDACTICA DE LAS MATEMATICAS DE LA ESCUELA FRANCESA ( Guy Brousseau)
Estrategias de enseñanza y evaluación :
PROGRAMAR LA TAREA DIARIA.
Elementos conceptuales
«Desempeño del profesor en formación en la competencia pedagógico-didáctica de planificación de la enseñanza: el caso de los estudiantes de Pedagogía Educación.
CALIDAD EN LOS CONTENIDOS VIRTUALES Aspectos Pedagógicos y Didácticos aplicados en los contenidos virtuales.
LA EVALUACIÓN EN LAS RESOLUCIONES Y EN UNA ESCUELA:
Características del aprendizaje
MODELOS DE RAZONAMIENTOS REALIZADOS CON MAPAS CONCEPTUALES (MAPAS DE
CONSECUENCIAS DE LA OPCIÓN METODOLÓGICA EN LA PROGRAMACIÓN Y LA EVALUACIÓN Elena Rodríguez Halffter 27 de octubre de 2006 Palma de Mallorca.
5º JORNADA - 29 DE SEPTIEMBRE
Planificación de la enseñanza
CURRICULUM BASADO EN COMPETENCIA
Elaborado por: Alcibiades Uribe
Planificación.
ACTUALIZACIÓN ACADÉMICA DE SABERES DE 7º AÑO DE LA EDUCACIÓN PRIMARIA.
Aprendizaje en la acción Un principio metodológico Profesor j. Miguel Huerta M 2010.
Organización de Situaciones de Enseñanza
Matemáticas Enfoque Planeación Evaluación y seguimiento.
PLANIFICACIÓN DIDÁCTICA CONTEXTUALIZADA.
VARIABLES DE LA PROGRAMACIÓN
Investigación Educativa del
HACER MATEMÁTICA EN EL NIVEL PRIMARIO
  EDUCACIÓN Y CURRÍCULO.
CALCULO MENTAL EN LA ESCUELA PRIMARIA
¿Qué es un Objetivos? Enunciar objetivos no significa establecer criterios de comparación entre los estudiantes, sino orientaciones generales para saber.
CURSO TALLER MANEJO DEL PORTAFOLIO DE EVIDENCIAS
Teorías de situaciones didácticas
Lic. Adalberto Avendaño Prieto.
Ambientes de aprendizaje
Tramo de Formación Pedagógica para Profesionales y Técnicos Superiores Teoría Sociopolítica y educación Marisa Rodríguez
LOS PROGRAMAS PARA LAS ASIGNATURAS EN LA ESTRUCTURA DEL PLAN
Es un sistema organizado de relaciones. Es una interdependencia de los componentes.
Subsecretaria de Educación Especializada e Inclusiva
UNIVERSIDAD INTERAMERICANA PARA EL DESARROLLO
Elementos del Planeamiento Didáctico
2° SEMESTRE HORAS: 6 CRÉDITOS: 7.5 % TRAYECTO FORMATIVO Y ÁMBITOS FORMATIVOS: PREPARACIÓN PARA LA ENSEÑANZA Y EL APRENDIZAJE CARÁCTER DEL CURSO: OBLIGATORIO.
Pensamiento cuantitativo en la educación preescolar
Prof. CAROLA CAPPELLO Prof. GRACIELA LABRADOR MATEMÁTICA 2014.
¿Qué es la Didáctica?.
Plan de superación profesional 2014
Transformaciones en la docencia universitaria
Unidad curricular: Evaluación Educativa
Los modelos de enseñanza según Charnay
Provincia de Salta Ministerio de Educación
OPERACIONES CON NÚMEROS NATURALES
 Tunuyán, 17 y 18 de Octubre Ana María Foglino Mariana Gild.
FUENTES PARA LA SELECCIÓN DE CONTENIDOS. Contenido Genérica Primer bloque (Usos y formas de la comunicación oral) Conceptos Epígrafes: >, >, > y >
Bases para el diseño, la producción y la evaluación del proceso de Enseñanza- Aprendizaje mediante nuevas tecnologías 5° Semestre Psicología Educativa.
TEORIAS DEL CURRICULUM
Transcripción de la presentación:

MÓDULO MATEMÁTICA Y SU ENSEÑANZA Lic Martha I. Guggisberg

Proyecto de enseñanza Todo proyecto de enseñanza se modela en función de los conocimientos que se quieren transmitir y del tipo de aprendizaje que se quiere lograr. La Didáctica de la Matemática se centra en el proceso de producción de los conocimientos, y en el hecho de que esa producción responde a la solución de problemas específicos que le dan sentido a los conocimientos matemáticos.

El tipo de aprendizaje es el escolar, es decir el aprendizaje que:  Se realiza en el marco de una institución  Incluye un currículum que debe enseñarse y aprenderse  Tiene objetivos pre determinados  Cuenta con requisitos de evaluación y acreditación  Existe una distribución de tiempos y espacios.

ACTIVIDAD Leemos en grupos el material bibliográfico correspondiente a los apartados “Conocimiento en evolución y problemas” y “Modelización” del documento para la capacitación MCyE. Realizamos las actividades allí planteadas

Estrategias de enseñanza propuestas por los didactas Las primeras producciones de los didactas centradas en la enseñanza de un contenido matemático son:  La Teoría de las Situaciones del didacta Guy Brousseau  La Dialéctica Instrumento – Objeto y el juego de marcos propuesto por Regine Douady.

Guy Brousseau Introduce la idea de elaborar situaciones áulicas que sean significativas para el sujeto de aprendizaje a través de una serie de momentos o etapas que se desarrollarán a partir del planteo de una situación problemática: Situación de Acción Situación de Formulación Situación de Validación

Regine Douady Introduce una distinción entre dos caracteres atribuibles a una noción matemática:  El uso de una noción en un problema es lo que se denomina su uso como instrumento, es una contextualización de la noción.  La noción como objeto cultural tendrá el carácter de objeto. Así se observarán instrumentos implícitos y explícitos.

ACTIVIDAD Leemos en grupos el material propuesto referente a: GRUPO 1: Guy Brousseau y la Teoría de las Situaciones. GRUPO 2: El conocimiento matemático y el contexto Realizamos las actividades propuestas

Criterios para construir situaciones de enseñanza “¿Qué es aprender matemática? Aprender matemática es, desde nuestra perspectiva, construir el sentido de los conocimientos, y la actividad matemática esencial es la resolución de problemas y la reflexión alrededor de los mismos” (Saiz, Sadovsky, Parra, 1994)

Construir el sentido de un conocimiento es reconocer en qué situaciones es útil ese conocimiento; en qué situaciones es una herramienta, un instrumento eficaz para resolverlas. Pero también en qué situaciones no es herramienta para resolverlas.

El sentido de un conocimiento se define:  Por la colección de situaciones en las que ese conocimiento es realizado como teoría matemática.  Por la colección de situaciones en las que el sujeto lo ha encontrado como medio de solución.  Por el conjunto de concepciones que rechaza, de errores que evita, de economías que procura, de formulaciones que retoma, etc. (Charnay)

Características que deberían reunir los problemas  Problemas que desencadenen un trabajo del alumno  Problemas donde el conocimiento al que apunta aparezca como necesario  Problemas donde los alumnos pongan en juego el conocimiento que poseen  Problemas adecuados para hacer evolucionar las concepciones del alumno  Problemas con sentido para los alumnos, que contextualicen el conocimiento a enseñar

Instrumentos de trabajo del profesor El profesor debe recomponer una trama de relaciones entre los conocimientos a enseñar para que sus alumnos puedan otorgarles sentido. Para recomponer la trama cuenta con las relaciones que conoce desde su dominio de la matemática. Aún así debiera poder establecer otro tipo de relaciones entre los conocimientos, derivadas de un análisis específico de los mismos para la enseñanza.

Un primer análisis didáctico Algunos instrumentos de análisis que permiten organizar los conocimientos y construir una trama para su enseñanza son:

La noción de campo conceptual El conjunto de problemas de un mismo campo conceptual requieren para su resolución un mismo tipo de operaciones, relaciones y propiedades, por lo que su consideración es un buen organizador de los conocimientos a enseñar.

El carácter de instrumento o de objeto de una noción Para caracterizar la puesta en funcionamiento de una noción se distinguen los caracteres (o status) según si se presenta como parte del cuerpo disciplinar, o en los problemas donde se utiliza.

Las contextualizaciones posibles Un contexto es el problema en el cual aparece una cierta noción. Los contextos pueden ser internos, de la misma matemática, o externos, en situaciones de otras disciplinas.

Los registros Permite caracterizar diferentes escrituras de una misma noción.

Tipos de problemas La clasificación de los conocimientos matemáticos según los tipos de problemas asociados también puede ser un modo de organización útil para estructurar los conocimientos de los alumnos.

Un segundo análisis didáctico Analizadas las dimensiones anteriores, el profesor construye un plan de trabajo. Luego deberá ocuparse de la selección de las situaciones teniendo en cuenta las variables didácticas y la preparación de secuencias de enseñanza

La observación de la clase La observación de la clase y la elaboración de un registro es un instrumento que permite volver sobre la experiencia a los que estuvieron presentes y traducirla en datos accesibles para los ausentes. Este puede ser, en un contexto de equipo de trabajo, un instrumento en el cual se vehiculice el intercambio profesional. Este instrumento contribuye a la instancia de reflexión sobre el desarrollo de la experiencia, sobre las interacciones que efectivamente se dieron entre los alumnos y la situación, entre los pares y de los alumnos con el profesor.

La inserción de las estrategias propuestas en la práctica de la enseñanza  ¿Cómo promover que los alumnos se responsabilicen de sus aprendizajes?  ¿Cómo completar los programas en los tiempos asignados?  ¿Cómo evaluar? ...

El tiempo de estructuración personal del saber Annie Berté (1993) propone analizar la enseñanza a partir de tres etapas: 1. Resolución de un problema. 2. Institucionalización de los conocimientos por parte del profesor. 3. Estructuración personal del saber que el alumno efectúa solo.

La tercer etapa es etapa como autodidacta. Se pone de manifiesto con los problemas de reutilización y familiarización que el alumno eventualmente pide y resuelve si se ha hecho responsable de su aprendizaje. La secuencia de construcción va más allá de una lista de ejercicios de aplicación.

El tiempo de apropiación es el momento que está entre el momento en que un saber se ha construido y el momento en que está efectivamente disponible. También llamado tiempo de rutinización. Es un tiempo de trabajo personal del alumno.

Reconstruir la trama Reconstruir la trama no es una lista de contenidos. Para reconstruir la trama es necesario seleccionar “conceptos atractores” que dan sentido a un conjunto de saberes y permiten organizar una parte importante de los conocimientos alrededor de ellos. Por ejemplo el concepto de proporcionalidad puede ser un concepto atractor.

El tiempo de aprender, el tiempo de enseñar y la evaluación El trabajo con los errores ayuda al proceso de evaluación. Las evaluaciones significativas en términos de los aprendizajes deberán implementarse luego de unidades completas de trabajo y luego de un tiempo suficientemente largo para que los alumnos hayan tenido ocasión de incorporar lo que han aprendido a sus procedimientos de resolución.

REPASANDO ALGUNOS CONCEPTOS TEÓRICOS SOBRE SISTEMAS DE NUMERACIÓN NOS DESPEDIMOS HASTA EL PRÓXIMO ENCUENTRO… GRACIAS POR VENIR!!!!