Buenas prácticas en matemáticas Universidad de Girona Departamento de Didácticas Específicas Área de Didáctica de la Matemática Àngel Alsina XII JORNADAS.

Slides:



Advertisements
Presentaciones similares
NAP Cuadernos para el aula
Advertisements

Las Competencias Básicas
COMPETENCIAS BASICAS EN EDUCACIÓN MATEMÁTICA
ESTANDARES DE CONTENIDO
Competencias básicas para el siglo XXI
Especificaciones Prueba MATEMÁTICA - TERCE
NUESTROS PEQUEÑOS MAYORES ¿ Sabemos lo que nos quieren decir....?
Mejorar la enseñanza de matemática
¿Cómo se desarrolla el pensamiento lógico matemático en el niño y la niña de primero y segundo? Carmen Elena Yela Chávez.
Propósitos del estudio de las Matemáticas para la Educación Básica
COMPETENCIAS PROYECTO TIC UNIVERSIDAD PONTIFICIA BOLIVARIANA
Área de Matemática.
RAZONAMIENTO RESOLUCION Y PLANTEAMIENTO DE PROBLEMAS COMUNICACION
Objetivo General Reconocer en los resultados de las pruebas Saber tercero y quinto de cada Establecimiento Educativo, una oportunidad de mejoramiento.
PRUEBA DE INGRESO Universidad Nacional de Colombia Dirección Nacional de Admisiones.
¿QUÉ SE EVALUA EN EL AREA DE MATEMATICAS?
REFLEXIONANDO ACERCA DEL PLAN Y PROGRAMAS DE ESTUDIO 2011
PROGRAMAR LA TAREA DIARIA.
SABER MATEMÁTICAS.
Av. Hermenegildo Galeana Mz. 540 Lt. 9 Col. San Isidro Valle de Chalco
MAPAS DE PROGRESO de geometría VI y vii CICLO
NIVELES COMPETENCIALES
DESCRIPCIÓN E IMPLICACIONES CURRICULARES
OA 6º BÁSICO MATEMÁTICAS.
PROGRAMA APRENDER-UNAH MÓDULO 5: DISEÑO DE LA INSTRUCCIÓN
SECUENCIA DIDÁCTICA DE ARITMÉTICA
PROGRAMA DE ESTUDIOS ESTRUCTURA Y ANÁLISIS CURRICULAR.
PRUEBA SABER MATEMÁTICAS 3° Y 5°
OA 4º BÁSICO MATEMÁTICAS.
OA 3º BÁSICO MATEMÁTICAS.
“Didáctica de Matemáticas” Parte 1
Curso-Taller: ENSEÑANZA DE LAS CIENCIAS CON EL ENFOQUE DE COMPETENCIAS
proyecto pedagógico transversal CUENTAS Y CUENTOS
OA 2º BÁSICO MATEMÁTICAS.
OBJETIVO GENERAL Promover la apropiación y uso de los estándares básicos de competencias en matemáticas en las prácticas de aula de los docentes de educación.
JUSTIFICACIÓN: Tras analizar los resultados de obtenidos en el área de matemáticas en cursos previos, llegamos a la conclusión de que debemos sistematizar.
Pensamiento Aleatorio y Sistemas de Datos
Principios para las Matemáticas Escolares
1. RECONOCIMIENTO Y DISTINCIÓN DE CÓDIGOS
MATEMATICAS COMPETENCIAS MATEMATICAS
1ª Sesión Desarrollo del curso
SUBSECRETARÍA DE EDUCACIÓN BÁSICA
CENTRO DE MAESTROS 1546 NICOLÁS ROMERO
Área de Matemática.
1 Competencias básicas Modelo EFQM de gestión de calidad Indicadores de resultados Jornadas de Formación Peñarroya- Pueblonuevo Marzo 2007.
Estándares Curriculares y Aprendizajes Esperados.
Esquema de las competencias básicas
La educacion basica en America Latina. cuba  · Las clases deben responder a uno o dos objetivos, no más. Los objetivos estarán estrechamente vinculados.
Estándares de Matemáticas
PREESCOLAR.
Currículo Infantil Gemma Rosado Corredor Lucía Castaño Jiménez
UNIDAD DE APRENDIZAJE 2:
INTRODUCCIÓN La educación básica busca que los niños y jóvenes desarrollen: Una forma de pensamiento que les permita interpretar y comunicar matemáticamente.
PROGRAMA DE CURSO EN EDUCACIÓN MATEMÁTICA. Programa de curso: Es el programa para el éxito en el aprendizaje de todos los alumnos, que el profesor diseña.
Competencia comunicación lingüística: Competencia matemática: 0 COMPETENCIAS EVALUADAS CONSEJERÍA DE EDUCACIÓN DIRECCIÓN GENERAL DE ORDENACIÓN.
JUGANDO ME INICIO EN EL DESARROLLO DEL PENSAMIENTO LOGICO-MATEMATICO
Integrado por: Milena Mendoza
2° SEMESTRE HORAS: 6 CRÉDITOS: 7.5 % TRAYECTO FORMATIVO Y ÁMBITOS FORMATIVOS: PREPARACIÓN PARA LA ENSEÑANZA Y EL APRENDIZAJE CARÁCTER DEL CURSO: OBLIGATORIO.
Construcción del proceso de medida
Pensamiento cuantitativo en la educación preescolar
El razonamiento algebraico como aritmética generalizada
Logros curriculares para la educación formal
¿Conoces las competencias de tu
LINEAMIENTOS CURRICULARES DE MATEMATICAS
Cultura escrita y Alfabetización
LAS COMPETENCIAS.
Campos de formación y Campos formativos
Competencias y Capacidades del área de Matemática
LAS COMPETENCIAS BÁSICAS EN LA EDUCACIÓN EID : Ser docentes hoy / educ.ar Tutora: Lic. Analía Poblete.
HUMANIDADES Y EDUCACIÓN
Transcripción de la presentación:

Buenas prácticas en matemáticas Universidad de Girona Departamento de Didácticas Específicas Área de Didáctica de la Matemática Àngel Alsina XII JORNADAS MATEMÁTICAS BO3 SESTAO 23 de febrero de 2011

 ¿QUÉ MATEMÁTICAS? Los conocimientos matemáticos en Educación Primaria  ¿PARA QUÉ? La competencia matemática  ¿CÓMO TRABAJAR? Algunos ejemplos de buenas prácticas ESQUEMA

1.¿QUÉ MATEMÁTICAS? Los conocimientos matemáticos en Educación Primaria

EDUCACIÓN MATEMÁTICA Principios y Estándares de la Educación Matemática (National Council of Teachers of Mathematics, 2000) CONTENIDOS MATEMÁTICOS Números y operaciones ÁlgebraGeometríaMedida Análisis de datos y probabilidad PROCESOS MATEMÁTICOS Resolución de problemas Razonamiento y demostración ComunicaciónConexionesRepresentación

Los contenidos matemáticos Álgebra (lógica) Numeración y cálculo Geometría Medida Análisis de datos y probabilidad

Álgebra (lógica) en Educación Primaria  Comprender relaciones (de equivalencia, de orden), patrones y funciones. Creación y seguimiento de series (numéricas, geométricas, etc.) Creación y seguimiento de series (numéricas, geométricas, etc.) Expresión (oral y escrito) del patrón Expresión (oral y escrito) del patrón  Analizar el cambio en diversos contextos (en matemáticas, un cambio es una operación) Descripción de situaciones que se mantienen constantes y situaciones en las que se producen cambios Descripción de situaciones que se mantienen constantes y situaciones en las que se producen cambios

Numeración y cálculo en Educación Primaria  Comprender los números, los modos de representarlos, las relaciones entre números y sistemas numéricos. Comprensión del sistema de numeración decimal y de su valor posicional Comprensión del sistema de numeración decimal y de su valor posicional Uso de diferentes lenguajes para representar el sistema de numeración decimal: concreto, pictórico, simbólico Uso de diferentes lenguajes para representar el sistema de numeración decimal: concreto, pictórico, simbólico Lectura y escritura de números Lectura y escritura de números Uso de diferentes materiales para comparar, ordenar y representar números Uso de diferentes materiales para comparar, ordenar y representar números

 Comprender los significados de las operaciones y cómo se relacionan unas con otras. Comprender los diferentes significados de las operaciones Comprender los diferentes significados de las operaciones Relaciones entre las oepraciones Relaciones entre las oepraciones Propiedades de las oepraciones Propiedades de las oepraciones  Calcular eficazmente y hacer estimaciones razonables. Estrategias de cálculo mental Estrategias de cálculo mental Uso de TIC y calculadora para desarrollar el cálculo Uso de TIC y calculadora para desarrollar el cálculo

Geometría  Analizar características y propiedades de las formas de una, dos y tres dimensiones y desarrollar argumentos matemáticos sobre relaciones geométricas. Identificar y describir las propiedades geométricas de las formas Identificar y describir las propiedades geométricas de las formas Construcción, representación y comparación de formas (clasificación según sus propiedades). Construcción, representación y comparación de formas (clasificación según sus propiedades). Composición y descomposición de formas. Composición y descomposición de formas.  Especificar posiciones y describir relaciones espaciales usando geometría de coordenadas y otros sistemas de representación. Creación y uso de sistemas de coordenadas. Creación y uso de sistemas de coordenadas. Realización, interpretación y uso de planos de itinerarios conocidos. Realización, interpretación y uso de planos de itinerarios conocidos.

 Aplicar transformaciones y usar la geometría para analizar situaciones matemáticas. Simetrías, desplazamientos y giros Simetrías, desplazamientos y giros  Usar la visualización, el razonamiento espacial, y la modelización geométrica para resolver problemas. Identificar las vistas parciales de una forma Identificar las vistas parciales de una forma Construcción y representación sobre papel de poliedros y polígonos Construcción y representación sobre papel de poliedros y polígonos Construcción de cuerpos de tres dimensiones a partir de figuras de dos dimensiones. Construcción de cuerpos de tres dimensiones a partir de figuras de dos dimensiones. Uso de instrumentos (regla, cartabón y recursos TIC, como por ejemplo el cabri) para ampliaar la capacidad de razonamiento espacial Uso de instrumentos (regla, cartabón y recursos TIC, como por ejemplo el cabri) para ampliaar la capacidad de razonamiento espacial

Medida  Comprender los atributos mesurables de los objetos y las unidades, sistemas, y procesos de medición. Reconocimiento de las magnitudes de longitud, masa, capacidad, àrea, tiempo y amplitud de ángulos Reconocimiento de las magnitudes de longitud, masa, capacidad, àrea, tiempo y amplitud de ángulos Comparación directa e indirecta (a través de instrumentos) Comparación directa e indirecta (a través de instrumentos) Uso de las unidades más comunes Uso de las unidades más comunes  Aplicar técnicas apropiadas, herramientas y fórmulas para determinar mediciones. Estrategias de estimación Estrategias de estimación Selección del instrumento y la unidad más adecuada Selección del instrumento y la unidad más adecuada Descripción oral y escrita de los resultados de la medida Descripción oral y escrita de los resultados de la medida

Análisis de datos y probabilidad  Formular cuestiones sobre datos y recoger, organizar y presentar datos relevantes para responderlos. Formulación de preguntas basadas en hechos que interesen a los alumnos Formulación de preguntas basadas en hechos que interesen a los alumnos Recogida de datos Recogida de datos Representación de datos (diagramas de barras, histogramas y pictogramas) Representación de datos (diagramas de barras, histogramas y pictogramas) Lectura y comprensión de datos estadísticos (de periódicos, libros, etc.) Lectura y comprensión de datos estadísticos (de periódicos, libros, etc.)  Desarrollar y evaluar inferencias y predicciones basadas en los datos. Descripción de situaciones a partir del análisis de datos (cálculo de la media, etc.) Descripción de situaciones a partir del análisis de datos (cálculo de la media, etc.)

 Comprender y aplicar conceptos básicos de probabilidad. Seguro, posible, imposible Seguro, posible, imposible Predicción y exploración de la probabilidad de resultados Predicción y exploración de la probabilidad de resultados

Los procesos matemáticos Conexiones Comunicación Resolución de problemas Razonamiento y prueba Representación

 ¿Qué son los procesos matemáticos? Son las herramientas que nos proporcionan la matemáticas para trabajar los diferentes contenidos. Son las herramientas que nos proporcionan la matemáticas para trabajar los diferentes contenidos. Introducen a los niños y niñas en las formas de pensar propias de las matemáticas: razonar, argumentar, descubrir, representar, modelizar, demostrar, etc. Introducen a los niños y niñas en las formas de pensar propias de las matemáticas: razonar, argumentar, descubrir, representar, modelizar, demostrar, etc. Permiten dar aplicabilidad a los contenidos matemáticos en diferentes contextos: en la escuela y, sobre todo, fuera de ella. Permiten dar aplicabilidad a los contenidos matemáticos en diferentes contextos: en la escuela y, sobre todo, fuera de ella. Conducen a la competencia matemática Conducen a la competencia matemática

CONTENIDOS MATEMÁTICOS Álgebra (lógica) Números y operaciones GeometríaMedida Análisis de datos y probabilidad PROCESOS MATEMÁTICOS Resolución de problemas Razonamiento y prueba ComunicaciónConexionesRepresentación Se retroalimentan COMPETENCIA MATEMÁTICA Comprensión, uso y valoración en diferentes contextos contextos

2. ¿Qué es la competencia matemática?

 “La competencia matemática es la habilidad para: Comprender las matemáticas (SABER); Comprender las matemáticas (SABER); usar las matemáticas (SABER HACER); usar las matemáticas (SABER HACER); y valorar las matemáticas (SABER ESTAR); y valorar las matemáticas (SABER ESTAR); en una variedad de situaciones en las que las matemáticas juegan o pueden desempeñar un papel (Niss, 2002).

 Hay dos grandes grupos de competencias matemáticas Preguntar y responder preguntas dentro de y con las matemáticas Gestionar el lenguaje y las herramientas matemáticas Dominio de modos de pensamiento matemático: argumentar, conjeturar, validar, etc. Planteamiento y resolución de problemas matemáticos Análisis y construcción de modelos Razonamiento matemático Representación de entidades matemáticas Manejo de símbolos matemáticos y formalismos Comunicación en, con, y acerca de las matemáticas Uso de recursos y herramientas

 Ser matemáticamente competente implica: Pensar matemáticamente: intuir, experimentar, relacionar conceptos y abstraer. Pensar matemáticamente: intuir, experimentar, relacionar conceptos y abstraer. Razonar matemáticamente: realizar deducciones e inducciones, particularizar y generalizar; argumentar las decisiones, los procesos y las técnicas. Razonar matemáticamente: realizar deducciones e inducciones, particularizar y generalizar; argumentar las decisiones, los procesos y las técnicas.

Plantear y resolver problemas: leer y entender el enunciado, generar preguntas, planificar y desarrollar estrategias de resolución y validar soluciones. Plantear y resolver problemas: leer y entender el enunciado, generar preguntas, planificar y desarrollar estrategias de resolución y validar soluciones. Obtener, interpretar y generar información con contenido matemático. Obtener, interpretar y generar información con contenido matemático.

Usar técnicas matemáticas básicas e instrumentos para hacer matemáticas. Usar técnicas matemáticas básicas e instrumentos para hacer matemáticas. Interpretar y representar expresiones, procesos y resultados matemáticos con palabras, dibujos, símbolos, números y materiales. Interpretar y representar expresiones, procesos y resultados matemáticos con palabras, dibujos, símbolos, números y materiales. Comunicar el trabajo y los descubrimientos a los demás, tanto oralmente como por escrito, usando de forma progresiva el lenguaje matemático. Comunicar el trabajo y los descubrimientos a los demás, tanto oralmente como por escrito, usando de forma progresiva el lenguaje matemático.

3. ¿Cómo podemos ayudar a los niños y niñas de Educación Primaria a desarrollar la competencia matemática?

 No todos los niños y niñas aprenden de la misma manera, por lo que es necesario diversificar los recursos.  Es necesario tener en cuenta las necesidades de los niños y niñas al utilizar diferentes recursos en la clase de matemáticas.

Situaciones cotidianas, movimiento y vivencias con el propio cuerpo Recursos manipulativos: materiales inespecíficos, comercializados o diseñados por el profesorado Recursos lúdicos: actividades recreativas y juegos Recursos tecnológicos: ordenador Libro de texto Recursos literarios: cuentos, novelas, etc.

Algunos ejemplos de buenas prácticas

Para trabajar la comprensión de los números y de las operaciones aritméticas

Relacionar fracciones equivalentes

Relacionar fracciones con números decimales y %

Para trabajar las propiedades geométricas de las formas

Esta NO se pega...

Estasí que se pega! Esta sí que se pega! Pero...

Con esta puedo hacer una caja...

¡Y con esta no!

Anamorfismes

programa anamorphme20: hace anamorfismos a partir de cualquier imagen para ser proyectadas en conos, cilindros, etc.

Para trabajar la práctica de medida

La gincana de las medidas

Prueba 7 Mide las dimensiones máximas (largo y ancho) del pasillo Práctica de medida de longitud

Prueba 9 Tenemos que medir las tres dimensiones del libro de mates

Prueba 17 ¿Qué es más largo, mi altura o mis brazos en cruz?

Prueba 8 ¿Cuánto debe pesar un litro de agua?, ¿y un litro de mijo? Compruébalo Práctica de medida de masa

Pongo 350 gramos de mijo...

¿Cuánto pesa?

850 grs.

Prueba 5 Mira tu reloj digital, escribe qué hora marca y dibújala en un reloj de agujas Práctica de medida del tiempo

Prueba 15 Llévame ¾ de litro de agua Práctica de medida de capacidad

Prueba 14 ¿A qué temperatura está el agua?

Práctica de medida de longitud (con instrumentos cada vez más precisos) Prueba 13 Cuánto mide de ancho del Diccionario de la Lengua Catalana?

Prueba 15 ¿Cuánto crees que tarda el reloj de arena en transparar la arena de un lado a otro? Práctica de medida del tiempo (estimación)

Relaciones entre diferentes magnitudes (por ejemplo, 1 litro es lo mismo que 1 dm 3

Práctica de medida de superfície (medida indirecta) Prueba 8 Me piden la superfície de una pieza del tangram ¿Cómo lo hago?

!Ahora voy bien!

Y ahora, todavía mejor

Práctica de medida de volumen (medida indirecta) Prueba 23 Calcula el volumen de un cubo de madera

Fase 3: anotación de resultados y recogida de materiales

Y para terminar, los alumnos recogen, limpian y guardan todo el material para una nueva sesión.

Algunas conclusiones  Los diferentes recursos didácticos (materiales manipulativos, TICs, etc.) no contribuyen por ellos mismos al desarrollo de la competencia matemática.  Una actividad es rica para desarrollar la competencia matemática en función de cómo se plantea la actividad, y de cómo se gestiona en el aula.

 Con respecto al planteamiento, es interesante preguntarse ¿Es una actividad que tiene por objetivo responder una pregunta, resolver un reto? ¿Es una actividad que tiene por objetivo responder una pregunta, resolver un reto? ¿Permite aplicar conocimientos ya adquiridos y hacer nuevos aprendizajes? ¿Permite aplicar conocimientos ya adquiridos y hacer nuevos aprendizajes? ¿Ayuda a relacionar conocimientos diversos dentro de la matemática o con otras materias? ¿Ayuda a relacionar conocimientos diversos dentro de la matemática o con otras materias? ¿Es una actividad que se puede desarrollar de diferentes formas y estimula la curiosidad y la creatividad del alumnado? ¿Es una actividad que se puede desarrollar de diferentes formas y estimula la curiosidad y la creatividad del alumnado?

 En la gestión de la actividad, es interesante preguntarse ¿Se fomenta la autonomía y la iniciativa del alumnado? ¿Se fomenta la autonomía y la iniciativa del alumnado? ¿Se interviene a partir de preguntas adecuadas más que con explicaciones? ¿Se interviene a partir de preguntas adecuadas más que con explicaciones? Se pone en juego el trabajo y el esfuerzo individual pero también el trabajo en parejas o en grupos para dialogar, argumentar, convencer, consensuar, etc.? Se pone en juego el trabajo y el esfuerzo individual pero también el trabajo en parejas o en grupos para dialogar, argumentar, convencer, consensuar, etc.? ¿Implica razonar sobre lo que se ha hecho y justificar los resultados? ¿Implica razonar sobre lo que se ha hecho y justificar los resultados? ¿Se avanza en la representación de manera cada vez más precisa y se usa progresivamente lenguaje matemático más adecuado? ¿Se avanza en la representación de manera cada vez más precisa y se usa progresivamente lenguaje matemático más adecuado?

¡MUCHAS GRACIAS!