5 Semejanzas Las transformaciones que mantienen la forma y las proporciones se llaman semejanzas. LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD.

Slides:



Advertisements
Presentaciones similares
Teorema de Thales.
Advertisements

PROFESORA: GLADYS ZORRILLA
10 Figuras planas. Áreas LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD
TEOREMA DE TALES Si un conjunto de rectas paralelas corta a dos rectas secantes, los segmentos determinados por las paralelas en una de las secantes, son.
PROPORCIONALIDAD Y SEMEJANZA
Teorema de Thales Esta presentación fue pensada y creada como un apoyo para los alumnos que necesitan aclarar ideas relacionadas con este teorema Prof.:
Teorema de Thales MÓDULO 22
TEMA 6 – SEMEJANZA 6.1 – Figuras semejantes
TEOREMA DE LA ALTURA TEOREMA DEL CATETO
Observamos que sus lados son proporcionales:
Estudiante en práctica de Pedagogía en Matemática
SEMEJANZA Y PROPORCIONALIDAD
TRIGONOMETRÍA MATEMÁTICAS 4º ESO.
UNA CATETADA VIII Olimpiada Thales.
SEMEJANZA Y CONGRUENCIA
Teorema de Thales Profesor: Reynaldo Flores Troncos.
Apuntes de Matemáticas 3º ESO
Matemáticas B 4º ESO Colegio Divina Pastora - Toledo
Dos figuras que tienen la misma forma, aun con diferentes dimensiones, se llaman semejantes. Dos figuras son semejantes si sus ángulos correspondientes.
Apuntes de Matemáticas 3º ESO
Actividad Gráficos sistemas de ecuaciones Visitar Sector matemática  Segundo medio.
Matemática 2 (EPE) Área de Ciencias MA de abril de 2017
RAZÓN DE ÁREAS Y VOLÚMENES
Semejanza. Teorema de Tales
Tema: Semejanza “Criterios de semejanza de triángulos”
TEOREMA DE PITAGORAS.
Axioma Postulado Teorema Corolario
Apuntes Matemáticas 2º ESO
Teorema de Pitágoras 1 Triángulos rectángulos
TEOREMA DE THALES APM.
SEMEJANZA DE TRIANGULOS
Cálculo de valores 300, 450 y 600 Hipotenusa = sen 450 = cos 450 =
SEMEJANZA DE TRIÁNGULOS PERÍMETROS, ÁREAS y VOLÚMENES
Teorema de Tales de Mileto
Apuntes de Matemáticas 2º ESO
Demostración del teorema de Pitágoras.
Esta presentación nos aclara como utilizar este famoso teorema
Apuntes de Matemáticas 3º ESO
Para mis alumnos de 4º B En esta presentación encontrarás :
SEMEJANZA DE TRIÁNGULOS
Teorema de Pitágoras Un triángulo rectángulo es un triángulo que tiene un ángulo recto, es decir de 90º. En un triángulo rectángulo, el lado más grande.
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 1º ESO
Figuras planas.
TEOREMA DE THALES ESPAD III * TC 22.
Igualdad y Semejanza de Triángulos (Tema 7 * 3º DC)
TEMA 5 – SEMEJANZA 5.1 – Figuras semejantes
Apuntes Matemáticas 2º ESO
Para entrar en materia, debemos recordar algunas ideas:
Apuntes Matemáticas 1º ESO
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 GEOMETRÍA PLANA TEMA 8 * 3º ESO.
Colegio El Valle Figuras semejantes
TEOREMAS DE SEMEJANZA ESPAD III * TC 23.
COLEGIO DISTRITAL EL SILENCIO BARRANQUILLA 2012
@ Angel Prieto BenitoMatemáticas 4º ESO Opción B1 TEMA 5 * 4º ESO Opc B SEMEJANZA.
Matemáticas 4º ESO Opción B
Resolver un triángulo rectángulo es calcular todos sus ángulos y sus lados. Incógnitas: a, b, c,  y  Se hará uso de:  +  = 90º c 2 = a 2 + b 2 razones.
Profra. Sandra L. García Garza
6 Trigonometría LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD
Apuntes Matemáticas 2º ESO
Apuntes Matemáticas 2º ESO
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 GEOMETRÍA PLANA U.D. 9 * 3º ESO E.AP.
Teorema de Thales I° medio 2015.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 GEOMETRÍA PLANA U.D. 9 * 3º ESO E.AP.
UNIDAD 5.
TEOREMAS DE SEMEJANZA TEOREMA DE THALES ..
Thales de Mileto Uno de los aportes importantes de Thales de Mileto, es el Teorema que lleva su nombre. El Teorema de Thales establece la relación entre.
INICIOESQUEMA INTERNETACTIVIDAD MATEMÁTICAS 4º ESO opción B Unidad 5: Semejanzas ANTERIOR SALIR 5 Semejanza INTERNET LECTURA INICIAL ESQUEMA ACTIVIDAD.
GEOMETRIA PROPORCIONAL II
TEOREMA DE LA ALTURA El cuadrado de la altura sobre la hipotenusa de un triángulo rectángulo es igual al producto de las proyecciones de los catetos sobre.
Transcripción de la presentación:

5 Semejanzas Las transformaciones que mantienen la forma y las proporciones se llaman semejanzas. LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD

Construcción de figuras semejantes La forma más sencilla es el método de la proyección. Fijamos un punto O. Trazamos rectas que pasen por O y por los vértices de la figura original. Los vértices de la nueva figura están alineados con O y con los vértices de la original, y sus lados serán paralelos a los de la figura original. SIGUIENTE

Teorema de Thales Teorema de Thales Comparando la sombra de un bastón y la sombra de las pirámides, Thales midió, por semejanza, sus alturas respectivas. La proporcionalidad entre los segmentos que las rectas paralelas determinan en otras rectas dio lugar a lo que hoy se conoce como teorema de Thales. Si tres o más rectas paralelas a, b y c son intersecadas por dos transversales r y s, y los segmentos de las rectas transversales determinados por las paralelas son proporcionales. SIGUIENTE

Teorema de Thales Ejemplo: Calcular la medida del segmento x. Ordenamos los datos en la proporción, según el teorema de Thales. SIGUIENTE

Semejanza de triángulos Dos triángulos son semejantes cuando verifican las siguientes condiciones: Sus lados son proporcionales: Sus ángulos son iguales: SIGUIENTE

Criterios de semejanza de triángulos Los criterios de semejanza de triángulos son las condiciones mínimas que han de cumplir los triángulos para que sean semejantes. SIGUIENTE

Criterios de semejanza de triángulos Los criterios de semejanza de triángulos son las condiciones mínimas que han de cumplir los triángulos para que sean semejantes. PRIMER CRITERIO: Dos triángulos son semejantes si dos de sus ángulos son iguales. SIGUIENTE

Criterios de semejanza de triángulos Los criterios de semejanza de triángulos son las condiciones mínimas que han de cumplir los triángulos para que sean semejantes. PRIMER CRITERIO: Dos triángulos son semejantes si dos de sus ángulos son iguales. SEGUNDO CRITERIO: Dos triángulos son semejantes si tienen sus lados proporcionales. SIGUIENTE

Criterios de semejanza de triángulos Los criterios de semejanza de triángulos son las condiciones mínimas que han de cumplir los triángulos para que sean semejantes. PRIMER CRITERIO: Dos triángulos son semejantes si dos de sus ángulos son iguales. SEGUNDO CRITERIO: Dos triángulos son semejantes si tienen sus lados proporcionales. TERCER CRITERIO: Dos triángulos son semejantes si tienen un ángulo igual y los lados que lo forman son proporcionales. SIGUIENTE

Aplicaciones de la semejanza de triángulos rectángulos Hallar la hipotenusa y la altura sobre la hipotenusa de un triángulo rectángulo cuyos catetos miden 3 y 4 cm, respectivamente. 4 cm 3 cm SIGUIENTE

Aplicaciones de la semejanza de triángulos rectángulos Hallar la hipotenusa y la altura sobre la hipotenusa de un triángulo rectángulo cuyos catetos miden 3 y 4 cm, respectivamente. 4 cm 3 cm Por Pitágoras: SIGUIENTE

Aplicaciones de la semejanza de triángulos rectángulos Hallar la hipotenusa y la altura sobre la hipotenusa de un triángulo rectángulo cuyos catetos miden 3 y 4 cm, respectivamente. 4 cm 3 cm Por Pitágoras: Aplicando el teorema del cateto: cm 8 , 1 5 9 3 2 16 4    n a b m c SIGUIENTE

Aplicaciones de la semejanza de triángulos rectángulos Hallar la hipotenusa y la altura sobre la hipotenusa de un triángulo rectángulo cuyos catetos miden 3 y 4 cm, respectivamente. 4 cm 3 cm Por Pitágoras: Aplicando el teorema del cateto: cm 8 , 1 5 9 3 2 16 4    n a b m c Aplicando el teorema de la altura: SIGUIENTE

Aplicaciones de la semejanza de triángulos rectángulos Calcular la altura de la torre. Los triángulos siguientes son semejantes por ser triángulos rectángulos y tener un ángulo común. Por lo tanto, la altura de la torre es 8,12 metros.

Semejanza de áreas y volúmenes Si dos figuras planas son semejantes, con razón de semejanza r, sus áreas serán proporcionales y la razón de la proporción es r2. SIGUIENTE

Semejanza de áreas y volúmenes Si dos cuerpos son semejantes, con razón de semejanza r, sus volúmenes serán proporcionales y la razón de la proporción es r3.