REACCIONES QUÍMICAS Unidad 8.

Slides:



Advertisements
Presentaciones similares
Reacciones Químicas.
Advertisements

REACCIONES QUÍMICAS y DISOLUCIONES QUÍMICA 2º bachillerato.
Tipos de Reacciones Químicas
Tipos de Reacciones.
BALANCEO DE ECUACIONES QUÍMICAS
Balanceo de Reacciones Químicas
REACCIONES Y ECUACIONES QUIMICAS
REACCIÓN QUÍMICA.
REACCIONES QUÍMCAS 1. Las reacciones químicas
LA REACCIÓN QUÍMICA NIVEL MACRO.
Reacciones Químicas Sergio Casas-Cordero E. Profesor de Química.
OCTAVA EVALUACIÓN Menciona las funciones químicas inorgánicas y su características principales. Cuál de las siguientes formulas es correcta: a) PH4; b)
REACCIONES QUÍMICAS Unidad 8.
REACCIONES Y ECUACIONES QUÍMICAS
Semana 6 Licda. Lilian Judith Guzmán Melgar
SANTIAGO ANTÚNEZ DE MAYOLO DEPARTAMENTO ACADÉMICO
REACCIONES QUIMICAS Y ESTEQUIOMETRIA
Concepto de Masa Atómica y MOL
1 Se tiene una muestra de 34 gramos de NH3. Calcula: a) La cantidad de sustancia. b) El número de moléculas. c) El número de átomos de N y H. Datos: masas.
Reacción del nitrato de plata con el
PREICFES DE QUIMICA COJOWA.
Estequiometria Javier Alvarez.
LEYES FUNDAMENTALES DE LA QUÍMICA
CLASE 6 ESTEQUIOMETRÍA II.
Estequiometría: Cálculos con fórmulas y ecuaciones químicas
Ciencias III Reacciones químicas usos catalizador Modifica la
Estequiometría Problemas de 3º ESO (2)
CAMBIOS QUÍMICOS Y SUS REPERCUSIONES
Conservación de la masa
4. REACCIONES QUÍMICAS Lic. Luis Fernando Cáceres Choque
Leyes Ponderales y Volumétricas
REACCIONES QUÍMICAS.
Departamento de Física y Química Cálculos Estequiométricos Un método de trabajo.
Relaciones de masa en las reacciones químicas Capítulo 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CaC2 (s) + H2O (l)  C2H2 (l) + Ca(OH)2 (ac)
Propiedades físicas de las disoluciones.
Concepto de Masa Atómica y MOL N A = Número de Avogadro = 6,02 x10 23 Mol = Cantidad de sustancia donde hay tantas entidades elementales como átomos de.
LEYES FUNDAMENTALES DE LA QUÍMICA
INTRODUCCION A REACCIONES QUÍMICAS
Estequiometría Asignatura: Química Curso: Acceso Mayores de 25 años
Química General Cálculos con ecuaciones químicas.
REACCIONES QUIMICAS SENCILLAS
Capítulo 1: ESTEQUIOMETRÍA Profesor de Biología y Química
UNIDAD 4: MATERIA Y SUS TRANSFORMACIONES ESTEQUIOMETRIA
REACCIONES QUÍMICAS y ESTEQUIOMETRIA QUÍMICA 1° Ciencias
Semana 6 Licda. Lilian Judith Guzmán Melgar
REACCIONES QUÍMICAS PRESENTADO POR: Profesora Laskmi Latorre Martínez
Cap 3. Estequiometría 1.Balancee la ecuación asegurándose que hay igual cantidad de átomos tanto del lado de los reactivos (izquierda) como de los productos.
Semana 6 ESTEQUIOMETRÍA (2015)
REACCIONES QUÍMICAS.
Resumen de la Unidad 2.
UNIDAD IV ESTEQUIOMETRÍA
1º BAC Procesos químicos U.1 La reacción química A.15 Obtención de la fórmula de una sustancia a partir de su composición centesimal.
ESTEQUIOMETRIA DE SOLUCIONES
1º BAC Procesos químicos U.1 La reacción química A.19 Cálculos estequiométricos.
1º BAC Procesos Químicos U.1 La reacción química A.52 Números de oxidación.
1º BAC Procesos químicos U.1 La reacción química A.47 Cálculo en reacciones ácido-base.
TEMA 7. ESTEQUIOMETRÍA. GUIÓN DEL TEMA 1.CAMBIOS QUÍMICOS. 2.¿CÓMO SE PRODUCEN LAS REACCIONES QUÍMICAS A NIVEL MOLECULAR? TEORÍA DE LAS COLISIONES 3.AJUSTE.
Concepto de reacción química Estado físico.
ESTEQUIOMETRIA.
ESTEQUIOMETRIA Semana No Semana 6 Licda. Isabel Fratti de Del Cid Diseño de diapositivas, imágenes e ilustraciones cortesía de Licda. Lilian Guzmán.
Tema 8 Reacciones químicas IES Padre Manjón Prof: Eduardo Eisman 1.
1 REACCIONES QUÍMICAS DISOLUCIONES QUÍMICA 2º bachillerato y y.
RECOPILADO POR : BELISARIO CÁRDENAS
REACCIONES QUÍMICAS Unidad 8.
1 REACCIONES QUÍMICAS Unidad 8. 2 Contenidos (1) 1.- Concepto de reacción química.Concepto de reacción química. 2.- Escritura esquemática y significado.
1 REACCIONES QUÍMICAS Unidad 8. 2 Contenidos (1) 1.- Concepto de reacción química.Concepto de reacción química. 2.- Escritura esquemática y significado.
1 REACCIONES QUÍMICAS Unidad 8. 2 Contenidos (1) 1.- Concepto de reacción química.Concepto de reacción química. 2.- Escritura esquemática y significado.
1 REACCIONES QUÍMICAS Unidad 8. 2 Contenidos (1) 1.- Concepto de reacción química.Concepto de reacción química. 2.- Escritura esquemática y significado.
REACCIONES QUÍMICAS Unidad 5.
Transcripción de la presentación:

REACCIONES QUÍMICAS Unidad 8

Concepto de reacción química. “Es un proceso mediante el cual unas sustancias (reactivos) se transforman en otras (productos de la reacción) por la reorganización de los átomos conformando moléculas nuevas. Para ello es necesario que rompan enlaces en las moléculas originales y se formen enlaces nuevos”.

Ejemplo de reacción química. Reactivos Productos En la reacción: H2 + I2 — 2 HI se rompen 1 enlace H—H y 1 enlace I —I y se forman 2 enlaces H—I

carbono oxígeno monóxido de carbono carbono oxígeno dióxido de carbono Cloruro de hidrógeno cinc cloruro de cinc hidrógeno

+ sulfato de cobre (II) hierro sulfato de hierro (II) cobre etanol oxígeno dióxido de carbono agua +

Ajuste de una reacción química. El número de átomos de cada elemento tiene que ser igual en los reactivos y en los productos. Se llama ajuste a la averiguación del número de moles de reactivos y productos. ¡CUIDADO! En el ajuste nunca pueden cambiarse los subíndices de las fórmulas de reactivos o productos. Métodos de ajuste: Tanteo (en reacciones sencillas). Algebraicamente (en reacciones más complejas) resolviendo un sistema de ecuaciones.

Ejemplo: Ajustar la siguiente reacción: HBr +Fe  FeBr3 + H2 Sean a, b, c y d los coeficientes (número de moles) de los respectivos reactivos y productos. a HBr + b Fe  c FeBr3 + d H2 H) a = 2d Br) a = 3c Fe) b = c Sea d = 1; entonces a = 2, c = 2/3 y b = 2/3 Multiplicando todos los valores por 3 obtenemos los siguientes coeficientes: a = 6, b = 2, c = 2 y d = 3. Por tanto la ecuación ajustada será: 6 HBr +2 Fe  2 FeBr3 + 3 H2

Ejercicio: Ajusta las siguientes ecuaciones químicas por el método de tanteo: a) C3H8 + O2  CO2 + H2O b) Na2CO3 + HCl  Na Cl + CO2 + H2O c) PBr3 + H2O  HBr + H3PO3 d) CaO + C  CaC2 + CO e) H2SO4 + BaCl2  BaSO4 + HCl 5 3 4 2 3 3 2

Ejercicio: Ajusta las siguientes ecuaciones químicas por el método algebraico: a) a KClO3  b KCl + c O2 K) a = b; Cl) a = b; O) 3a = 2c Sea a = 1. Entonces b = 1 y c = 3/2 Multiplicando todos los coeficientes por 2: 2 KClO3  2 KCl + 3 O2 b) a HCl + b Al  c AlCl3 + d H2 H) a = 2d; Cl) a = 3c; Al) b = c Sea c = 1. Entonces b = 1, a = 3 y d = 3/2 6 HCl + 2 Al  2 AlCl3 + 3 H2

Ejercicio: Ajusta las siguiente ecuación químicas por el método algebraico: a HNO3 + b Cu  c Cu(NO3)2 + d NO + e H2O H) a = 2e; N) a = 2c + d; O) 3a = 6c +d + e; Cu) b = c Sea c = 1. Entonces b = 1 y el sistema queda: a = 2e; a = 2 + d; 3a = 6 + d + e; Sustituyendo a: 2e = 2 + d; 6e = 6 + d + e Sistema de dos ecuaciones con dos incógnitas que resolviendo queda: e = 4/3; d= 2/3 con lo que a = 8/3 Multiplicando todos los coeficientes por 3: 8 HNO3 + 3 Cu  3 Cu(NO3)2 + 2 NO + 4 H2O Comprobamos el nº de átomos de cada tipo antes y después de la reacción: 8 átomos de H (4 ·2), 8 de N (2·3 +2), 24 de O (8·3= 3·2·3 +2 +4) y 3 de Cu

Estequiometría de una reacción química. Es la proporción en moles en la que se combinan los distintos reactivos y en la que se forman los distintos productos de la reacción. Una vez determinado el número de moles de reactivos y productos (ajuste de la reacción) se puede hacer el cálculo en masa (gramos) o en volumen (litros) en el caso de gases o disoluciones.

Tipos de cálculos estequiométricos. Con moles. Con masas. Con volúmenes (gases) En condiciones normales. En condiciones no normales. Con reactivo limitante. Con reactivos en disolución (volúmenes).

Cálculos con masas Ejemplo: En la reacción ajustada anteriormente: 6 HBr +2 Fe  2 FeBr3 + 3H2 ¿qué cantidad de HBr reaccionará con 10 g de Fe y qué cantidades de FeBr3 e H2 se formarán? 6 HBr + 2 Fe — 2 FeBr3 + 3H2 6 moles 2 moles 2 moles 3 moles 485,4 g 111,6 g 591,0 g 6 g ———— = ———— = ———— = ——— x 10 g y z Resolviendo las proporciones tendremos: 43,5 g 10 g 52,9 g 0,54 g

Ejercicio:Se tratan 40 g de oxido de aluminio, con suficiente disolución de ácido sulfúrico en agua para que reaccione todo el óxido de aluminio y se forme sulfato de aluminio y agua. Calcula los moles del ácido que se necesitan y la masa de sulfato que se forma. Datos (u): Mat(Al) = 27, Mat(S) = 32, Mat(O) = 16, Mat(H) = 1 M (Al2O3) = 2 · 27 u + 3 · 16 u = 102 u M [ Al2(SO4)3 ]= 2 · 27 u + 3 · (32 u + 4 · 16 u) = 342 u Primero, ajustamos la reacción: Al2 O3 + 3 H2SO4 ———— Al2(SO4)3 + 3 H2 O 1mol 3moles 1mol 3moles Se transforman los moles en “g” o “l” (o se dejan en “mol”) para que quede en las mismas unidades que aparece en los datos e incógnitas del problema:

Ejercicio:Se tratan 40 g de oxido de aluminio con suficiente disolución de ácido sulfúrico en agua para que reaccione todo el óxido de aluminio y se forme sulfato de aluminio Al2(SO4)3 y agua. Calcula los moles del ácido que se necesitan y la masa de sulfato que se forma. Datos (u): Mat(Al) = 27, Mat(S) = 32, Mat(O) = 16, Mat(H) = 1 Al2 O3 + 3 H2SO4 ———— Al2(SO4)3 + 3 H2 O 102 g 3 moles 342 g 40 g n (mol) m (g) 102 g 3 moles 40 g · 3 mol —— = ———  n (mol) = ————— = 1,18 mol H2SO4 40 g n (mol) 102 g 102 g 342 g 40 g· 342 g —— = ———  m (g) =————— = 134,12 g Al2(SO4)3 40 g m (g) 102 g

Cálculos con volumenes (gases) Ejemplo: Calcula el volumen de dióxido de carbono que se desprenderá al quemar 1 kg de butano (C4H10) a) en condiciones normales b) a 5 atm y 50ºC. Cálculos con volumenes (gases) La reacción de combustión del butano es: C4H10 + 13/2 O2  4 CO2 + 5 H2O a) 1 mol 4 moles 58 g 4 mol · 22,4 l/mol 1000 g x x = 1544,8 litros

Ejercicio: Calcula el volumen de CO2 que se desprenderá al quemar 1 kg de butano (C4H10) a) en condiciones normales b) a 5 atm y 50ºC. C4H10 + 13/2 O2  4 CO2 + 5 H2O b) Cuando las condiciones no son las normales es mejor hacer el cálculo en moles y después utilizar la fórmula de los gases: 58 g ————— 4 moles 1000 g ————— y  y = 69 moles n · R · T 69 mol · 0,082 atm · L · 323 K V = ———— = ————————————— = p mol · K 5 atm = 365,5 litros

Ejercicio: El oxígeno es un gas que se obtiene por descomposición térmica del clorato de potasio en cloruro de potasio y oxígeno ¿Qué volumen de oxígeno medido a 19ºC y 746 mm Hg se obtendrá a partir de 7,82 g de clorato de potasio. Ecuación ajustada: 2 KClO3 2 KCl + 3 O2 2 mol 3 mol 2 mol·122,6 g/mol = 245,2 g —— 3 mol 7,82 g —— n(O2) Resolviendo se obtiene que n (O2) = 0,0957 moles n · R · T 0,0957 moles · 0,082 atm · L · 292 K V= ———— = ——————————————— = p mol · K (746 / 760) atm = 2,33 litros

Cálculos con disoluciones Ejemplo: Añadimos 150 ml de disolución 2 M de hidróxido de sodio a otra disolución de sulfato de magnesio. Averigua la masa de hidróxido de magnesio que se formará si el sulfato de magnesio está en exceso. 2 NaOH + MgSO4  Mg(OH)2 + Na2SO4 2 mol —————— 58,3 g 0,15 L · 2 mol/L ————— m De donde se deduce que: m (Mg(OH)2) = 0,3 mol · 58,3 g / 2 mol = 8,7 g

El rendimiento en las reacciones químicas. En casi todas las reacciones químicas suele obtenerse menor cantidad de producto dela esperada a partir de los cálculos estequiométricos. Esto se debe a: Perdida de material al manipularlo. Condiciones inadecuadas de la reacción. Reacciones paralelas que formas otros productos. Se llama rendimiento a: mproducto (obtenida) Rendimiento = ———————— · 100 mproducto (teórica)

n(NaCl) = V · Molaridad = 0,01 L · 1 mol/L Ejemplo: A 10 ml de disolución de cloruro de sodio 1 M añadimos nitrato de plata en cantidad suficiente para que precipite todo el cloruro de plata. Determina la masa de este producto que obtendremos si el rendimiento de la reacción es del 85 %. n(NaCl) = V · Molaridad = 0,01 L · 1 mol/L NaCl + AgNO3  AgCl + NaNO3 1 mol 143,4 g 0,01 mol m (AgCl) De donde m(AgCl) = 1,43 g 1,434 g · 85 mAgCl (obtenida) = ————— = 1,22 g 100

Riqueza La mayor parte de las sustancias no suelen encontrarse en estado puro. Se llama riqueza al % de sustancia pura que tiene la muestra. m (sustancia pura) riqueza = ———————— · 100 m (muestra) Ejemplo: Si decimos que tenemos 200 g de NaOH al 96 %, en realidad sólo tenemos 96 200 g · ——— = 192 g de NaOH puro 100

150 g · 70 m (HCl) = ———— = 105 g 100 Zn + 2 HCl  ZnCl2 + H2 Ejemplo: Tratamos una muestra de cinc con ácido clorhídrico del 70 % de riqueza. Si se precisan 150 g de ácido para que reaccione todo el cinc, calcula el volumen de hidrógeno desprendido en C.N. 150 g · 70 m (HCl) = ———— = 105 g 100 Zn + 2 HCl  ZnCl2 + H2 73 g 22,4 L 105 g V(H2) De donde V = 105 g · 22,4 L / 73 g = 32,2 litros

Cuestión de Selectividad (Marzo 98) Un gasóleo de calefacción contiene un 0,11 % en peso de azufre. a) Calcule los litros de dióxido de azufre (medidos a 20ºC y 1 atm) que se producirán al quemar totalmente 100 kg de gasóleo. b) Comente los efectos de las emisiones de dióxido de azufre sobre las personas y el medio ambiente. DATOS: Masas atómicas: S=32; O=16 a) 100 kg · 0,11 m (S) = —————— = 0,11 kg = 110 g 100 S + O2  SO2 32 g 1 mol ——— = ———  n(SO2) = 3,4 moles 110 g n(SO2) n · R · T 3,4 mol · 0’082 atm · L · 293 K V= ———– = ————————————— = 82,6 L p mol · K 1 atm