FUNCIÓN RACIONAL Lucas Picos.

Slides:



Advertisements
Presentaciones similares
Funciones lineales Las funciones de la forma y = ax + b, donde a, b R se llaman funciones lineales. Recorrido: R Recorrido: R (0, b): ordenada en el.
Advertisements

Tema 8 FUNCIONES, LÍMITES Y Angel Prieto Benito
Unidad 1: Funciones, Límite y Continuidad
QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS
Presentado por: Steffany Serebrenik,
Tipos de funciones Por: Carlos Alberto García Acosta
ASÍNTOTAS.
JAVIER ALVAREZ PRESENTA
7. FUNCIONES Y GRAFICAS Definiciones
ELIHURRIGEL RASCON VASQUEZ
FUNCIONES DE VARIABLE REAL
Representación gráfica de funciones
Polinomios Álgebra Superior.
FUNCIONES CUADRATICAS
Unidad 1: Funciones, Límite y Continuidad
HABILIDADES LÓGICO-MATEMÁTICAS
PROPORCIONALIDAD INVERSA Una proporcionalidad inversa es cuando, si en un eje aumenta su valor, en el otro disminuye.
Tema 8 APLICACIONES DE LAS DERIVADAS.
Guías Modulares de Estudio Matemáticas IV – Parte B
Funciones Presentado por: Tammy Roterman y Orli Glogower
Funciones Racionales Lucas Picos.
REPRESENTACIÓN GRÁFICA DE FUNCIONES RACIONALES.
INTRODUCCIÓN A LA MATEMÁTICA ECONÓMICO EMPRESARIAL
Formas de representación
Cálculo diferencial (Arq)
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 LÍMITES Y CONTINUIDAD Tema 8.
GRÁFICA DE FUNCIONES RACIONALES
Límite de una función en un punto.
GRAFICA DE FUNCIONES RACIONALES
Límites y continuidad de funciones.
MATEMÁTICA APLICADA. * DOCENTE :Gonzáles Piscoya Amador. * NOMBRES Y APELLIDOS : -Leguía Siesquén Stephany. -Díaz Vásquez Rocío. -Sandoval Cunyarache.
Conceptos Fundamentales de Álgebra
Funciones. Presentado por: Steffany Serebrenik, Hellen Kreinter y David Castañeda. Presentado a: Patricia Cáceres. Colegio Colombo Hebreo Grado Decimo.
Tema XIII Aplicaciones de derivadas
Tema VI Límites y continuidad
Representación gráfica de funciones
Matemáticas Aplicadas CS I
Funciones. Presentado por: Steffany Serebrenik, Hellen Kreinter y David Castañeda. Presentado a: Patricia Cáceres. Colegio Colombo Hebreo Grado Decimo.
SUCESIONES Una sucesión de números reales es una aplicación del conjunto de los números naturales en el conjunto de los números reales: s: N R de.
Apuntes 2º Bachillerato C.T.
DÍA 50 * 1º BAD CT GRÁFICA DE FUNCIONES RACIONALES.
Tipos de Funciones..
Modelo matemático de las funciones poli nominales
ASÍNTOTAS DÍA 37 * 1º BAD CS.
Límites y continuidad.
CÁLCULO DE LÍMITES EN EL INFINITO
18/04/2017Cálculo (Adm) - clase 2.1
Por: Andrés Castrillón Juan Sebastián Lozano Pablo Ruiz Navarro.
QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS
Funciones Continuidad de una función Tipos de discontinuidad
Unidad 2: La derivada Trazado de curvas: Funciones racionales.
Asíntotas horizontales.
TEMA 12 ESTUDIO DE FUNCIONES 4º B Curso
Límites y Continuidad.
LÍMITES Y SUS PROPIEDADES
Límites y continuidad Cálculo 1.
@ Angel Prieto BenitoApuntes 2º Bachillerato CS1 APLICACIONES DE LAS DERIVADAS Tema 8 * 2º B CS.
JOHNY QUINTERO Tema 2. Límites 1 Límites 1.Índice 2.¿Qué es el Cálculo? 3.El problema del área 4.Introducción a los límites 5.Límites que no existen 6.Definición.
Matemáticas 4º ESO Opción B
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 FUNCIONES ELEMENTALES U.D. 6 * 1º BCT.
Representación de funciones
Límite de una función Una idea intuitiva de límite.
Proyecto de Matemáticas: Funciones Presentado por: Jonathan Guberek Daniel Croitoru Mark Guberek Presentado a: Patricia Caceres COLEGIO COLOMBO HEBREO.
Cálculo Diferencial.
TEMA 2 INTEGRAL DE RIEMANN.
Definición de derivada
Fundamentos para el Cálculo
1.4 ASÍNTOTAS DE UNA FUNCIÓN: HORIZONTALES, VERTICALES E INCLINADAS. DR. VÍCTOR MORÁN CÁCERES MSC.
INGENIERIA EN AGROINDUSTRIAS
Transcripción de la presentación:

FUNCIÓN RACIONAL Lucas Picos

ASINTOTA Una de las formas de estudiar el comportamiento de una función cuando sus valores tienden a infinito o en aquellos puntos en los que la función no está definida (puntos aislado) es comparar la función con una recta, así diremos que una recta es una asíntota de una función cuando la gráfica de la función y la recta permanecen muy próximas. Dependiendo de como sea la recta tenemos tres tipos de asíntotas: Verticales, Horizontales y Oblicuas.

Pero cual es la definición de una función Racional? Es la función de la forma Pero que es Función? Es el término usado para indicar la relación o correspondencia entre dos o más cantidades. donde p(x) y q(x) son funciones polinómicas y q(x) es distinto de cero. El dominio consiste de todos los números reales excepto aquellos para los cuales el denominador, q(x) es 0. Polinomio: Es la suma de varios monomios  Codominio: De una función  es el conjunto que participa en esa función. Dominio: Es el conjunto de valores para los que una función está definida Monomio: expresión algebraica en la que se utilizan letras, números y signos

Encuentra el dominio de las siguientes funciones racionales: Ejemplo: Encuentra el dominio de las siguientes funciones racionales: Números Reales: incluyen a los números racionales (como: 31, 37) como a los números irracionales aquellos que no se pueden expresar de manera fraccionaria y tienen infinitas cifras decimales.

y = R(x) y = L x Asíntota horizontal Definición Si x tiende a  (x   ) ó x  -, y el valor de R(x) se acerca a un número fijo L, entonces la línea y = L es una asíntota horizontal de la gráfica de R. Asíntota horizontal y = R(x) y = L x  Asíntota: Es una función cuya representación gráfica es en forma de línea recta o parábola y que su trayectoria es de aproximación a una curva. Asíntota Horizontal: Se llama asíntota horizontal.  El valor (número Real) al que tiende F(x) al crecer (o decrecer) indefinidamente la x. 

y y = R(x) y = L x x y y = L x y = R(x)

y x x = c Asíntota Vertical x Si x se acerca a un número real c, y el valor de |R(x)|  , “se acerca a infinito”, entonces la línea x = c es una asíntota vertical de la gráfica de R. y Infinito: Da referencia a una cantidad sin límite o final, contrapuesto al concepto de finitud. Finito: Es un grupo con un número finito de elementos. x Asíntota Vertical x = c Asíntotas Vertical: son rectas verticales a las cuales la función se va acercando indefinidamente sin llegar nunca a cortarlas. x

y x Asíntota Oblicua Las asíntotas oblicuas son rectas de ecuación: Definición Si una asíntota no es ni horizontal ni vertical se se llama asíntota oblicua. y x Asíntota Oblicua Para valores de x cada vez mayores (en valor absoluto), los puntos de la recta y los de la gráfica de la función están cada vez más próximos. Las asíntotas oblicuas son rectas de ecuación:

El Teorema de las Asíntotas Verticales Una función racional, , en forma reducida, tiene una asíntota vertical en x = r, si x – r es un factor del denominador q(x); o sea, q(r )= 0 . OJO: Para que x = r sea una asíntota vertical q(r) = 0 pero p(r) ≠ 0. La recta x=a es asíntota vertical (AV) de f(x) si limx->a+ f(x) = inf olimx->a- f(x) = inf. Asíntota : Se le dice a una función f(x) a una recta t cuya distancia a la curva tiende a cero, cuando x tiende a infinito o bien x tiende a un punto a.

La gráfica tiene tiene una asíntota vertical en x = 3 Ejemplo Encuentra las asíntotas verticales de la gráfica de cada función racional, si existen. La gráfica tiene asíntotas verticales en : x = - 1 y en x = 1 La gráfica tiene una asíntota vertical en x = - 4 La gráfica tiene no tiene asíntotas verticales La gráfica tiene tiene una asíntota vertical en x = 3

en donde el grado del numerador es n y el grado del denominador es m. Teorema de las asíntotas horizontales y oblicuas - Considere la función racional en donde el grado del numerador es n y el grado del denominador es m. 1. Si n < m, entonces la línea y = 0 es una asíntota horizontal de la gráfica de R. 2. Si n = m, entonces la línea y = an / bm es una asíntota horizontal de la gráfica de R. 3. Si n = m + 1, entonces la línea y = ax + b es una asíntota oblícua de la gráfica de R, donde ax + b es el cociente de la división entre p (x) y q (x). 4. Si n > m + 1, la gráfica de R no tiene asíntotas lineales ni horizontales ni oblícuas. Asíntotas Horizontales : Nos indica a que tiende la función cuando la x es mus grande o muy pequeña, además son rectas paralelas al eje OX. Se escriben y= valor de la asíntota. Asíntotas Oblicuas: Una función racional tiene asíntotas oblicuas cuando el grado del numerador es una unidad mayor que el grado del denominador.

Ejemplo Encuentra la asíntota horizontal u oblicua de la gráfica de la función, si existe. La asíntota horizontal es: y = 0 La asíntota horizontal es; y = 2/3 La asíntota oblicua es; y = x + 6