GRÁFICA DE FUNCIONES DÍA 47b * 1º BAD CS

Slides:



Advertisements
Presentaciones similares
REPRESENTACIÓN GRÁFICA DE FUNCIONES
Advertisements

EJEMPLO DE ANÁLISIS DE UNA FUNCIÓN RACIONAL
Representación Gráfica de una función
SOLUCIÓN DE ANÁLISIS DE LA FUNCIÓN RACIONAL
REPRESENTACIÓN GRÁFICA DE FUNCIONES
TEMA 11: APLICACIONES DE LA DERIVADA
PROBLEMAS CON CONDICIONES
Corrección DE LA ACTIVIDAD PROPUESTA
Monotonía: crecimiento y decrecimiento en un intervalo
Puntos de corte con los ejes
. Temas FUNCIONES, LÍMITES DE FUNCIONES y CONTINUIDAD
TASA DE VARIACIÓN Dada una función cualquiera f(x), se define su tasa de variación media en un intervalo [a, b], como: TVM[a, b] = var i ac ón de f ( x.
11. Monotonía y Curvatura Aplicaciones de la derivada
FUNCIONES.
Representación gráfica de funciones
FUNCIONES ELEMENTALES
Matemática 5º Núcleo común
FUNCIONES ELEMENTALES
CRECIMIENTO - MÁX. Y MÍN. DÍA 44 * 1º BAD CS
Introducción a Funciones de una variable
Tema 8 APLICACIONES DE LAS DERIVADAS.
APLICACIONES DE LAS DERIVADAS
Representación gráfica de funciones
Apuntes 1º BAD C.SOCIALES
Aplicaciones de las derivadas
Apuntes 1º Bachillerato CT
Criterio de la primera Derivada
REPRESENTACIÓN GRÁFICA DE FUNCIONES
REPRESENTACIÓN GRÁFICA DE FUNCIONES RACIONALES.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 GRÁFICAS RACIONALES TEMA 13.5a * 2º BCT.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 LÍMITES Y CONTINUIDAD Tema 8.
GRÁFICA DE FUNCIONES RACIONALES
Matemáticas Acceso a CFGS
GRAFICA DE FUNCIONES RACIONALES
Representación gráfica de funciones.
@ Angel Prieto BenitoApuntes 1º Bachillerato C.T.1 PRIMERA DERIVADA DÍA 47 * 1º BAD CT.
Aplicaciones de la derivada a la economía
Tema XIII Aplicaciones de derivadas
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 FUNCIONES Tema 6.
Representación gráfica de funciones
Matemáticas Aplicadas CS I
Apuntes 2º Bachillerato C.T.
DÍA 50 * 1º BAD CT GRÁFICA DE FUNCIONES RACIONALES.
@ Angel Prieto BenitoApuntes 2º Bachillerato CS1 APLICACIONES DE LAS DERIVADAS Tema 8 * 2º B CS.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 EXTREMOS RELATIVOS y CRECIMIENTO Bloque III * Tema 124.
ASÍNTOTAS DÍA 37 * 1º BAD CS.
ESTUDIO GRÁFICO DE FUNCIONES
Matemática Básica(Ing.)1  Continuidad,  Funciones crecientes y decrecientes,  Función acotada,  Extremos locales y absolutos,  Simetrías,  Asíntotas,
LAS DERIVADAS Y SUS APLICACIONES
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 OTRAS GRÁFICAS TEMA 13.7a * 2º BCT.
@ Angel Prieto BenitoApuntes 2º Bachillerato CS1 APLICACIONES DE LAS DERIVADAS Tema 8 * 2º B CS.
@ Angel Prieto BenitoApuntes 2º Bachillerato CS1 APLICACIONES DE LAS DERIVADAS Tema 8 * 2º B CS.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 U.D. 13 * 3º ESO E.AP. FUNCIONES LINEALES Y CUADRÁTICAS.
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 FUNCIONES ELEMENTALES U.D. 6 * 1º BCT.
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 DERIVADAS U.D. 8 * 1º BCT.
Tema 5: Aplicaciones de la derivada
@ Angel Priet Benito Matemáticas Aplicadas CS I 1 Si tenemos una ecuación de la forma y = a.x 3 + b.x 2 + c.x + d, entonces podemos decir que es una función.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 DERIVADAS U.D. 10 * 1º BCS.
REPRESENTACIÓN GRÁFICA DE FUNCIONES Por Aida. Pasos a seguir Dominio Simetrías Periodicidad Puntos de corte con los ejes Asíntotas y ramas infinitas Crecimiento.
APLICACIONES DE LAS DERIVADAS
U.D. 9 * 2º BCS GRÁFICAS DE FUNCIONES.
COMPOSICIÓN Y TRANSFORMACIÓN DE FUNCIONES
Apuntes 2º Bachillerato C.S.
U.D. 9 * 2º BCS GRÁFICAS DE FUNCIONES.
U.D. 9 * 2º BCS GRÁFICAS DE FUNCIONES.
APLICACIONES DE LAS DERIVADAS
APLICACIONES DE LAS DERIVADAS
APLICACIONES DE LAS DERIVADAS
APLICACIONES DE LAS DERIVADAS
Apuntes 1º Bachillerato CT
Transcripción de la presentación:

GRÁFICA DE FUNCIONES DÍA 47b * 1º BAD CS

Ejemplo_2 Representar la función y = (1/4).x4 – 2.x2

CORTES CON LOS EJES Representar la función y = (1/4).x4 – 2.x2 1.- Puntos de corte con los ejes. Con OY  x = 0  y = 0  Pc (0,0) Con OX  y = 0  (1/4).x4 – 2.x2 = 0 Sacando factor común a x2 x2 [ (1/4).x 2 – 2 ] = 0 x2 = 0  x=0  Pc(0, 0) (1/4).x 2 – 2 = 0  x 2 = 8  x = ± 2√2 Luego los otros dos puntos de corte son: Pc ( - 2√2 , 0) y Pc ( + 2√2, 0) Nótese que dos de los tres puntos de corte con OX coinciden.

MÁXIMOS Y MÍNIMOS RELATIVOS Representar la función y = (1/4).x4 – 2.x2 2.- Derivamos la función para hallar los puntos singulares: y ‘ = x3 – 4.x Igualamos a cero: y ‘ = 0  x3 – 4.x = 0 Resolviendo la ecuación: x.(x2 – 4) = 0  x.(x – 2).(x + 2) = 0  x = 0  x = 2 , x = - 2 Hallamos las ordenadas correspondientes, los valores de f (x): f(0) = 0  P (0, 0) es un Máx, o Mín f(2) = (1/4).2 4 – 2.2 2 = – 4  P (2, - 4) es un Máx, o Mín f(-2) = (1/4).(-2)4 – 2.(-2)2 = – 4  P (-2, - 4) es un Máx, o Mín Miramos si es máximo o mínimo, por la derivada segunda: y ‘’ = 3.x2 – 4  f ‘’ (0) = 0 – 4 = - 4 < 0  P (0, 0) es un Máximo y ‘’ = 3.x2 – 4  f ‘’ (2) = 12 – 4 = 8 > 0  P (2, -4) es un Mínimo y ‘’ = 3.x2 – 4  f ‘’ (-2) = 12 – 4 = 8 > 0  P (-2, -4) es un Mínimo

RAMAS ASINTÓTICAS Representar la función y = (1/4).x4 – 2.x2 3.- Ramas infinitas Lím (1/4).x4 – 2.x2 = 0,25.(- oo)4 – 2.(- oo)2 = + oo x  - oo Lím (1/4).x4 – 2.x2 = 0,25.(oo)4 – 2.(oo)2 = + oo x  + oo

CRECIMIENTO Y DECRECIMIENTO Representar la función y = (1/4).x4 – 2.x2 4.- Delimitamos los intervalos de crecimiento y decrecimiento: Su derivada era y ‘ = x3 – 4.x En x = 0 había un máximo relativo. En x = 2 había un mínimo relativo. En x = -2 había un mínimo relativo. Los intervalos a estudiar son: (-oo, -2) , (-2, 0) , ( 0, 2) y (2, oo) Tomamos un punto cualquiera de cada intervalo: f ’ ( -3) = (-3)3 – 4.(-3) = - 27 + 12 = - 15 < 0  Decreciente en (- oo, -2) f ’ ( -1) = (-1)3 – 4.(-1) = - 1 + 4 = 3 > 0  Creciente en (- 2, 0) f ’ ( 1) = (1)3 – 4.(1) = 1 – 4 = - 3 < 0  Decreciente en (0, 2) f ’ ( 3) = (3)3 – 4.(3) = 27 – 12 = 15 > 0  Creciente en (2, oo)

PUNTOS DE INFLEXIÓN Representar la función y = (1/4).x4 – 2.x2 5.- Hallamos los Puntos de Inflexión, si los hay: Su derivada era y ‘ = x3 – 4.x Hallamos la segunda derivada: y ’’ = 3.x2 – 4 Igualamos a cero: 3.x2 – 4 = 0  x2 = 4/3  x = ±√1,3333 = ± 1,1547 son las abscisas de los posibles puntos de inflexión. Comprobamos que lo es hallando la tercera derivada: y’’’ = 6.x  f ‘’’ (1,1547) <> 0 En x = 1,1547 hay un P.I. y’’’ = 6.x  f ‘’’ (- 1,1547) <> 0 En x = - 1,1547 hay un P.I. Hallamos sus ordenadas: f(1,1547) = (1/4).(16/9) – 2.(4/3) = 4/9 – 8/3 = -20/9  PI (1,1547, -20/9) f(-1,1547) = (1/4).(16/9) – 2.(4/3) = 4/9 – 8/3 = -20/9  PI (-1,1547, -20/9)

CURVATURA Representar la función y = (1/4).x4 – 2.x2 6.- Hallamos los intervalos de concavidad y convexidad: Su derivada era y ‘ = x3 – 4.x Hallamos la segunda derivada: y ’’ = 3.x2 – 4 Igualamos a cero: x3 – 4.x = 0  x = 0, x = 2 y x = - 2 son puntos de limitación. Los intervalos a estudiar son: (- oo, -2), (-2, 0), (0, 2) y (2, + oo) Tomamos un punto cualquiera de cada intervalo: f ‘’ (-3) = (-3)3 – 4.(-3) = - 27+12 = - 15 < 0  Es CONVEXA en (- oo, -2) f ‘’ (-1) = (-1)3 – 4.(-1) = - 1 + 4 = 3 > 0  Es CÓNCAVA en (- 2, 0) f ‘’ (1) = (1)3 – 4.(1) = 1 – 4 = - 3 < 0  Es CONVEXA en (0, 2) f ‘’ (3) = (3)3 – 4.(3) = 27 – 12 = 15 > 0  Es CÓNCAVA en (2, oo)

f ( - x) = (1/4).(-x)4 – 2.(-x)2 = (1/4).x4 – 2.x2 SIMETRÍAS Representar la función y = (1/4).x4 – 2.x2 f (x) = (1/4).x4 – 2.x2 f ( - x) = (1/4).(-x)4 – 2.(-x)2 = (1/4).x4 – 2.x2 Vemos que presenta simetría par, pues f (x) = f ( - x) f (x) = (1/4).x4 – 2.x2 - f( - x) = - (1/4).x4 + 2.x2 Vemos que no presenta simetría impar, pues f (x) <> - f ( - x)

Gráfica del Ejemplo_2 Sea la función: y y = (1/4).x4 – 2.x2 Pc(0,0), Pc(2√2,0) y (-2√2,0) P (0, 0) es un Máximo relativo P (2, -4) es un Mínimo relativo P (-2, -4) es un Mínimo relativo Decreciente en (- oo, -2) Creciente en (- 2, 0) Decreciente en (0, 2) Creciente en (2, oo) Punto de Inflexión: PI (1,1547, -20/9) Punto de Inflexión: PI (-1,1547, -20/9) Es CONVEXA en (- oo, -2) Es CÓNCAVA en (- 2, 0) Es CONVEXA en (0, 2) Es CÓNCAVA en (2, oo) Presenta simetría PAR. y -3 -2 -1 0 1 2 3 x