RACIONALIZAR Racionalización de denominadores
Un radical está simplificado cuando: El índice no tiene factores comunes con el exponente del radicando. Se han extraído los factores que son raíces exactas. El radicando no tiene denominador.
= m k m k n n Racionaliza el denominador (A) 2 3 2 3 3 2 3 2 3 = = = 3 2 3 2 3 = = = 3 32 k m k n m n = (k 0) 6ab 2a 2a = 3b (B) = 3b 3b 3b 3b
Racionaliza el denominador b a + (C) 3 b a – 3 = a – b a + b 3 b a + = a2 b2 – (a + b) (a – b) b a + 3 = = a2 – b2 a – b
Racionaliza el denominador 3 a – (D) 1 3 a + = 3 a + 3 a – 3 a – = a2 – 9 3 a – = a – 9