La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Matemáticas para la Enseñanza: Algunas cuestiones, algunas reflexiones PETER GALBRAITH University of Queensland Australia

Presentaciones similares


Presentación del tema: "Matemáticas para la Enseñanza: Algunas cuestiones, algunas reflexiones PETER GALBRAITH University of Queensland Australia"— Transcripción de la presentación:

1 Matemáticas para la Enseñanza: Algunas cuestiones, algunas reflexiones PETER GALBRAITH University of Queensland Australia

2 2 Aprender matemáticas para enseñar Hay una creencia ampliamente extendida que la percepción de la enseñanza y aprendizaje de las matemáticas está influída por la concepción sobre las matemáticas,… la concepción sobre qué son las matemáticas afecta la concepción sobre cómo deberían presentarse (Paper A for review 2005) La experiencia que los participantes tuvieron como aprendices de matemáticas conforman la manera en que se perciben a sí mismos como profesores de matemáticas. (Paper B for review 2005)

3 3 Algo de historia Aunque estos estudiantes habían sido expuestos a cálculo y límites alrededor de cuatro años,… la mayoría de los estudiantes era incapaz de formular un argumento sencillo en análisis, y peor todavía, casi no tenían intuición sobre el tema. Para muchos la matemática era (y posiblemente es) un sueño formalista hecho realidad, que implica el uso de algoritmos rutinarios aplicados a símbolos sin sentido para deducir respuestas rutinarias a preguntas con menos sentido todavía... Después de doce años de escolaridad seguidos por dos años de universidad todos habían aceptado la matemática sin sentido que se les había impartido. Pocos disfrutaban con las matemáticas, la mayoría simplemente deseaban obtener su diploma y finalizar, como profesores,… [Gray, 1975](ESM) Asistiendo módulo tras módulo, los estudiantes tendían a descargar la memoria más que a retener y construir una estructura coherente de conocimiento… Su supuesta estrategia para el examen resultaba en una comprensión tan frágil que la reconstrucción del conocimiento olvidado parecía extraño a muchos de los que tomaron parte. [Anderson et. al., 1998](IJMES&T) Reflexiones sobre el Contenido

4 4 Item mecánico : x 2 – ax +12=0 representa una familia de ecuaciones. Se obtienen cuatro miembros de la familia dando a a los valores 5, 6, 7 y 8. ¿Para qué valores de a podemos resolver la ecuación factorizando el lado izquierdo? A. sólo para 5 B. 7 yd 8 C. 6 y 7D. sólo 8 E. ninguno Item Interpretativo : ¿Cuál de las siguientes puede ser la ecuación del gráfico mostrado? A. y = (x - 2) 2 (1 - x) B. y = (2 - x) 2 (1 - x) C. y = (x - 2) 2 (x - 1) D. (x - 1) 2 (x - 2) E. Ninguna de ellas Item Constructivo : Las ecuaciones de dos gráficas son y = 3/x e y = x Obtén una ecuación cúbica cuya solución sea la coordenada x del punto de intersección de estos dos gráficos. ¿Cuántas raices positivas tiene esta ecuación? [Galbraith & Haines, 1999] (IJMES&T) (in)comprensión de los estudiantes de pregrado

5 5 Ítems mecánicos Capacidad en un procedimiento dado Ítems interpretativos Recordar y aplicar conocimiento conceptual Ítems constructivos Aplicar conceptos y procedimientos introducidos por el resolutor Conjetura: Sobre el rendimiento M > I >C Resultados (N=423): Proporción correcta M(0.41) > I(0.30) > C(0.19) Tipos de ítems

6 6 Estudio Australiano (Queensland, Sydney, Western Australia) Foco: Existencia y persistencia de concepciones erróneas en matemáticas (e.g) El interés es comparar las respuestas en diferentes contextos: (a) 4 = ? (Correcto: UG = 40% ; PG=26%) (b)Observaciones evaluación (Correcto: UG =29%; PG = 29%) (c) Dibujar el gráfico de (i) y = (4 – x 2 ) y (ii) x 2 + y 2 = 4 2 para (a) -1 para (b) semicírculo superior para (C) Graduación en la escuela y comparación de graduados

7 7 Robustez año a año Respuestas conflictivas conviven en armonía sin crear curiosidad o inquietud. Concepciones erróneas de matemática entre los graduados de la escuela que permanecen relativamente intactas tres o cuatro años en los cursos de graduación Las concepciones erróneas, métodos mal guiados y poco desarrollados e intuiciones no refinadas tienden a permanecer; no importan las tareas, correcciones, soluciones, tutoriales, lecciones y exámenes que se hagan [Gray] Algunos temas persistentes en las respuestas

8 8 Un marco teórico: Comunidad de Práctica Una empresa común definida y custodiada por los participantes Contiene rutinas, palabras, útiles, formas de hacer las cosas, etc que caracterizan la comunidad Para las matemáticas las actividades esenciales incluyen:  Conjeturar  Defender  Probar y rebatir  Abstraer  Justificar  Generalizar  Resolver Problemas  Comunicar Los miembros de la comunidad se implican activamente en estos fines- el aprendizaje profundo implica que los aprendices también tienen que hacerlo Hay consecuencias tanto para la enseñanza como para la evaluación (Muchas referencias – una base filosófica que incluye el Constructivismo Social y el aprendizaje superficial y profundo)

9 9 El matemático ve alternativas - e.g. representaciones diferentes pero ligadas de la función Gráfica Geométrica SimbólicaNumérica Mackie, D. (2002). Using Computer Algebra to encourage a Deep Learning approach to Calculus. ICTM2, Herniossis, Crete. y x f(x) = a x or dy/dx = kx x 2 x Un ejemplo – Representaciones múltiples

10 10 1. VIÑETAS Hallar la asíntota oblicua de Student A: Por división Como x la asíntota es y = x - 3; Student B: Dividiendo N y D po x, = Como x, la asíntota es y = x – 1. Se pide a los estudiantes A y B resolverlo. Aproximaciones: Formatos alternativos de presentación

11 11 Formatos alternativos (cont) Adaptables a la enseñanza, discusión en clase, colección tutorial de problemas o ítems de evaluación. Supporting Assessment in Undergraduate Mathematics (SAUM)

12 12 Formatos alternativos (cont)

13 13 Formatos alternativos (cont)

14 14 Formatos alternativos (cont)

15 15 Formatos alternativos (cont) Khan : A y B son multiplicativas inversas dentro del conjunto de matrices de la forma y las leyes usuales de adeición y multiplicación se aplican. George: Esto no es correcto, porque las matrices signlares no tienen multiplicativa inversa. Decide con cuál estás de acuerdo y defiende tu elección con un argumento matemático 9. DEFIENDE

16 16 ¿Como cambiar los marcos conceptuales de los pretendidos profesores? ¿Qué tareas comportan conceptos y procedimientos fundamentales que confronten comprensión y concepciones erróneas? ¿Qué se puede hacer en la práctica? ¿Presiones económicas frente a académicas el diseñar cursos para grupos multidisciplinares? ¿Inclusión de formatos alternativos ricos en el planteamiento de problemas en cursos y exámenes? Implicaciones para la Educación de Profesores

17 17 Reflexiones sobre la Modelización Matemática Henry Pollak (1969) – La mayoría de aplicaciones de las matemáticas no lo son! Problemas pretendidos Ejemplo A: La altura de una especie de madera dura viene dada por y = x 2 /20(1-x/60), donde y son metros y x el tiempo en años despúes de plantar las semillas. ¿Cuál es el tiempo final en que los árboles debieran ser talados? Problemas de Whimsy La función de estos problemas…proporciona alivio cómico en el sentido de Shakespearean, y probablemente hacen mucho bien – pero no en matemática aplicada. (Pollak, 1969) Dos albóndigas se caen de una fuente de spaghetti y ruedan hasta el final de la mesa. Una albóndiga rueda a 1.2 m/s y la otra a 0.8 m/s. Se caen de la mesa y aterrizan sobre una alfombra de Isfaham que costó $5000. Si la mesa tine una altura de 1.2 m ¿como de separadas aterrizan las dos albóndigas? (2004 source)

18 18 More whimsy Pitágoras was sitting in calculus in the 80-degree weather of mid-April, wishing he were at the beach. While daydreaming, his terrible case of senioritis took over and his grade quickly began to plummet. When he got his final report card, he saw his grade had decreased. The amount it decreased is equal to the volume of the solid bounded in the first quadrant by y = 2 – x 3, revolved about the x-axis. If he started the 4th quarter with a 69, by how much did his grade decrease and will he pass the class with a 60 or better ? (April 2005)

19 19 Modelos de modelización 1. Modelización como Vehículo El contenido curricular escolar en nuestro país no admite fácilmente la oportunidad de hacer modelización matemática, un tema explícito en el currículo matemático K-12. El fin primario de incluir modelización matemática en la experiencia matemática de los estudiantes es típicamente proporcionar un contexto alternativo – y supuestamente implicar- en que los estudiantes aprendan matemáticas sin el fin principal de convertirse en modelizadores expertos… Reconocer este contexto curricular es reconocer que la implicación amplia de los estudiantes en actividades de modelización en la clase es esencial para la instrucción matemática sólo si la modelización proporciona a los estudiantes oportunidades significativas de desarrollar una comprensión más fuerte y profunda de la matemática curricular [Zbiek & Conner, 2006] (ESM) La modelización permanece en la clase – juega un papel secundario, respecto a otros fines curriculares.

20 20 Modelos de modelización cont 2. Modelización como Contenido Comenzando con una situación problemática del mundo real, simplicado y estructurando lleva a formular un problema y de aquí a un modelo matemático del problema…Es una práctica común usar el término modelización matemática para el proceso completo que consiste en estructurar, matematizar, trabajar matemáticamente e interpretar, validar, revisar y reportar el modelo. [Blum, et.al., 2003; 2007] (ICMI STUDY 14) El contexto real juega un papel esencial tanto en la construcción del modelo como en la evaluación de su importancia. El proceso no puede vivir completamente en el aula.

21 21 Modelización como ajuste de curvas 3. Modelización como ajuste de curvas Dados datos en 4 intervalos semanales del número de minutos de horas de luz diarias (amanecer hasta el atardecer) de localidades dadas, encontrar funciones que se ajusten a los datos… Para Melbourne (2004) encontramos la ecuación, Basados en las propiedades de los solsticios, y la longitud del año solar. Usando la regresión periódica de TI 83 calcular un ajuste técnicamente más ajustado como: !! [De un problema de un curso se secundaria superior, 2005] Surgen preguntas fundamentales de filosofia.

22 22 Un ejemplo potente G I Taylor and the New Mexico atomic test of 1945 (Pedley 2005) Usando sólo análisis dimencional y fotografías publicadas, se infirió la fuerza de la bomba atómica probada en el desierto de Nuevo México en El radio de la onda expansiva (R), solo podía depender del tiempo (t), energía liberada instantáneamente (E), y densidad del aire en el que la onda se expande (ρ). Inferido (sólo se requiere matemática escolar) R = C (Et 2 /ρ) 1/5 donde C s una constance adimensional. Se usó una serie de fotografías publicadas mostrando R frente a t, y un gráfico log-log para estimar C y E. Contactadas las autoridades Americanas Creo que la bomba que han probado tiene una potencia equivalente aproximada de 17 kilotones de TNT. (Resultado – apoplejia!!!)

23 23 Un ejemplo contemporáneo – Supérame en tamaño

24 24 Supérame en tamaño– Preguntas estructuradas

25 25 ¿Por qué la modelización para profesores? Las matemáticas viven fuera de la clase Fines estructurales – facilitar la integración del contenido y métodos de argumento matemático Enseñar como acceder a y usar las técnicas matemáticas aprendidas para resolver problemas del mundo real. Ser más que un simple consumidor del conocimiento de los demás Facilidad para implicarse en temas actuales (incluso sociales) e.g. Morgan Spurlock –Supérame en tamaño. [ w n = w n-1 + (I - 24 w 0 )/7700, donde I representa el promedio conocido de consumo diario de calorías. Las constantes (que estiman equivalencias calorías ~ kg de alimentos y de diversas formas de ejercicio) están disponibles en diversas fuentes de internet]

26 26 Implications for teacher education Programas de Matemáticas - Demandas crecientes de cursos de servicio -- Recursos decrecientes- Cultura tradicional: - Foco en la modelización (formulación, solución, informe) parecen diferentes em ñps contenidos terciarios tradicionales (e.g. listado de teoremas o rango de tópicos y técnicas específicas) (ICTMA group) Programas de Educación - Cuestión de Personal - Cuestión de programas apretados de pedagogía – ¿que puede incluirse dentro? ¿Un desafío es crear un espacio para ambos?

27 27 Gracias


Descargar ppt "Matemáticas para la Enseñanza: Algunas cuestiones, algunas reflexiones PETER GALBRAITH University of Queensland Australia"

Presentaciones similares


Anuncios Google