La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

La cinemática es la parte de la física que estudia el movimiento de los cuerpos sin tener en cuenta las causas que lo producen ¿QUÉ ES LA CINEMÁTICA?

Presentaciones similares


Presentación del tema: "La cinemática es la parte de la física que estudia el movimiento de los cuerpos sin tener en cuenta las causas que lo producen ¿QUÉ ES LA CINEMÁTICA?"— Transcripción de la presentación:

1

2 La cinemática es la parte de la física que estudia el movimiento de los cuerpos sin tener en cuenta las causas que lo producen ¿QUÉ ES LA CINEMÁTICA? 1 1

3 Decimos que un cuerpo se mueve cuando cambia de lugar. Para saber si un cuerpo se encuentra en movimiento, es necesario fijar su posición en un instante determinado respecto al P.R.. Si su posición varía con el tiempo, decimos que, respecto a ese punto, el objeto está en movimiento. La localización de un punto en el espacio respecto de otro punto que tomamos como referencia (P.R.) recibe el nombre de posición. ¿QUÉ ES EL MOVIMIENTO? 1 1

4 EL OBJETO QUE SE MUEVE: UN PUNTO MATERIAL ELEMENTOS FUNDAMENTALES DEL MOVIMIENTO 3 3 EL SISTEMA DE REFERENCIA TRAYECTORIA DESCRITA POR UN MÓVIL

5 Para simplificar el estudio del movimiento prescindiremos de todos los componentes del cuerpo y de sus dimensiones y lo trataremos como si fuera un punto material. EL OBJETO QUE SE MUEVE: UN PUNTO MATERIAL

6 Para determinar la posición de un punto en cualquier instante es necesario fijar otro punto en el espacio como referencia, es decir, el punto de referencia (P.R.) El punto de referencia puede ser cualquier objeto, real o imaginario. Si el punto de referencia está en reposo o se mueve con velocidad constante decimos que es un sistema de referencia inercial. Podemos considerar la Tierra como un sistema de referencia inercial. EL SISTEMA DE REFERENCIA

7

8 Sistema cartesiano de referencia En el espacio En el plano Este sistema está formado por un punto en el espacio y tres ejes concurrentes

9 El punto P(x,y,z) estará en reposo respecto a O si sus coordenadas permanecen constantes con el tiempo. Cuando el punto P se mueve, sus coordenadas van tomando distintos valores con el tiempo. TRAYECTORIA DESCRITA POR EL MÓVIL Ejemplos: rastro que deja un caracol, un avión,…

10 Las magnitudes necesarias para el estudio del movimiento pueden ser: Posición Desplazamiento Velocidad Aceleración MAGNITUDES ESCALARES MAGNITUDES VECTORIALES Espacio recorrido Tiempo MAGNITUDES DEL MOVIMIENTO 4 4 Conocimientos Previos

11 MAGNITUDES ESCALARES Para ser definidas sólo necesitamos conocer su valor numérico y la unidad correspondiente Espacio recorrido Tiempo Ejemplo: El autobús recorrió 72 Km en 55 minutos

12 MAGNITUDES VECTORIALES Se representan por vectores (segmentos orientados) Para ser correctamente definidas necesitamos conocer su: Punto de aplicación u origen Módulo, intensidad o valor numérico y su unidad Dirección o posición espacial del vector (línea en la que se apoya el vector) Sentido, que viene indicado por la punta de la flecha

13 Elementos de un vector PUNTO DE APLICACIÓN DIRECCIÓN SENTIDO MÓDULO

14 MAGNITUDES DEL MOVIMIENTO 4 4 VECTOR DE POSICIÓN ESPACIO RECORRIDO VELOCIDAD ACELERACIÓN VECTOR DESPLAZAMIENTO

15 VECTOR DE POSICIÓN Existen dos formas de localizar un punto (P) en el espacio: Coordenadas cartesianas, P(x,y,z) Con un vector de posición, r, es un vector que une el origen del S.R. con el punto P. El origen de este vector se halla siempre en el origen de coordenadas y su extremo coincide en cada instante con la posición del punto móvil

16 VECTOR DE POSICIÓN 0 y z x j k P(x,y,z) i r

17 Ejemplos En una dimensiónEn el plano x P(3,0,0) x y P(3,2,0) Donde son vectores unitarios que tienen la dirección de los ejes, x, y, z, respectivamente y sentidos positivos

18 El módulo del vector de posición se calcula Vector de posición Módulo o valor numérico

19 Si en un instante determinado un móvil se encuentra en la posición P o (x o, y o, z o ) y al cabo de cierto tiempo su posición es P 1 (x 1, y 1, z 1 ) diremos que el móvil se ha desplazado desde el punto P o al P 1. Este cambio de posición viene definido por el vector desplazamiento, VECTOR DESPLAZAMIENTO z o y P o (x o,y o,z o ) x P 1 (x 1,y 1,z 1 ) El vector desplazamiento es un vector que tiene su origen en la posición inicial del móvil y su extremo en la posición final.

20 El vector desplazamiento es la diferencia entre el vector de posición final y el vector de posición inicial, o, lo que es lo mismo el incremento del vector de posición. Observa que el vector de desplazamiento sólo interviene en las posiciones inicial y final del móvil, es independiente de la trayectoria seguida para pasar de una posición a otra. El módulo del vector desplazamiento proporciona la distancia que el objeto se desplaza en línea recta. En general esa distancia no coincide con la distancia recorrida por el cuerpo, a no ser que lleve movimiento rectilíneo y que no varíe de sentido

21 El espacio recorrido es la longitud de la trayectoria que ha seguido el móvil. Es una magnitud escalar. ESPACIO RECORRIDO TRAYECTORIA ESPACIO RECORRIDO P1P1 P2P2 VECTOR DESPLAZAMIENTO

22 VELOCIDAD Para determinar el movimiento de una partícula es necesario conocer como varía su posición en el transcurso del tiempo. La velocidad es la magnitud que relaciona el desplazamiento con el tiempo. La velocidad es una magnitud vectorial, primero estudiaremos el concepto de velocidad media

23 Suponemos que la posición del objeto en el instante inicial (t o ) viene determinada por el vector, y en instante t, ocupa la posición determinada por el vector, así tenemos que la velocidad media es: VECTOR VELOCIDAD MEDIA z o y t o x t

24 El vector tiene la misma dirección y sentido que el vector desplazamiento En el S.I. el módulo de la velocidad media se expresa en metros cada segundo (m/s) Si queremos describir el movimiento de un objeto en cada instante, la velocidad media no nos es útil, por ello debemos aprender a calcular la velocidad instantánea.

25 Para calcular la velocidad con la que se mueve el objeto en cualquier instante, podemos ir reduciendo el intervalo de tiempo considerado en el cálculo de la velocidad media hasta conseguir que sea prácticamente nulo. VECTOR VELOCIDAD INSTANTÁNEA y x z Así observamos que: A medida que se reduce el intervalo de tiempo, el módulo del vector desplazamiento se aproxima más y más a la distancia recorrida El vector velocidad instantánea es tangente a la trayectoria en cualquier punto de esta. (Ver la siguiente diapositiva)

26 Matemáticamente, el proceso anterior es el siguiente : La velocidad instantánea es el valor al que tiende la velocidad media al ir aproximando a cero el intervalo de tiempo Este proceso es lo que se llama cálculo de la derivada del vector de posición respecto del tiempo

27 Si conocemos la ecuación de posición podemos obtener con facilidad la velocidad en cada instante derivando respecto del tiempo: Vector de posición Derivamos respecto del tiempo Obtenemos la Velocidad Instantánea El Módulo de la velocidad instantánea o rapidez

28 RESUMEN DE LA VELOCIDAD INSTANTÁNEA Es un vector tangente a la trayectoria en el punto donde se encuentra el móvil Es la derivada del vector de posición respecto al tiempo.

29 FUNCIÓNDERIVADA DE LA FUNCIÓN POPIEDADES DE LA DERIVADA Derivada de la suma de dos funciones Derivada del producto de dos funciones Algo básico para que puedas derivar

30 ACELERACIÓN La aceleración es la variación de la velocidad con el tiempo. Como la velocidad es un magnitud vectorial puede variar en módulo (aumentando o disminuyendo), sentido y en dirección.

31 Ejemplos de movimientos en los que hay aceleración Caso 1: Velocidad cambia de sentido Un coche se mueve con una velocidad de 30 km/h acelera hasta alcanzar una velocidad de 100 km/h Caso 2: El módulo de la Velocidad aumenta Lanzamos una pelota horizontalmente con una velocidad de 10 m/s sobre una pared. La pelota rebota con la misma velocidad V o =30 km/hV f =100 km/h

32 Caso 3: El módulo de la velocidad disminuye Un coche que se mueve con una velocidad de 50 km/h frena ante un obstáculo hasta pararse Caso 4: La dirección de la velocidad cambia constantemente Un coche toma una curva con rapidez constante de 45 km/h

33 ACELERACIÓN MEDIA La velocidad de un móvil no pueden pasar instantáneamente de un valor a otro, siempre cambia gradualmente a lo largo del tiempo. El intervalo de tiempo puede ser largo o corto, es decir el cambio de la velocidad puede ser lento o brusco. La aceleración informa cómo varía la velocidad con relación al tiempo (cambio brusco o lento de la velocidad. En el S.I. el módulo de la aceleración media se expresa en metros por segundo en cada segundo (m/s 2 ). La aceleración media es:

34 Ejemplo: Si un coche lleva una aceleración de 2m/s 2, significa que en cada segundo la velocidad aumenta 2m/s Si un objeto lanzado hacia arriba lleva una aceleración de -9,8 m/s 2, significa que en cada segundo la velocidad disminuye 9,8 m/s

35 Como el incremento del tiempo es un escalar siempre positivo, la aceleración media es un vector que tiene la misma dirección y sentido que el incremento de velocidad

36 ACELERACIÓN INSTANTÁNEA Si el intervalo de tiempo se hace infinitamente pequeño, hablamos de aceleración instantánea. La expresión anterior se corresponde con la derivada del vector velocidad con respecto del tiempo: En forma desarrollada:

37 COMPONENTES INTRÍNSECAS DE LA ACELERACIÓN. Aceleración Tangencial y Normal La aceleración es la magnitud que mide la variación del vector velocidad por unidad de tiempo, esta variación puede ser debida a: – Variación del módulo de la velocidad – Variación de la dirección de la velocidad (en movimientos curvilíneos). Por ello la aceleración consta de dos componentes: – Aceleración Tangencial: Expresa la variación del módulo de la velocidad – Aceleración Normal: Expresa la variación de la dirección de la velocidad.

38 Relación entre la aceleración total y las dos componentes : aceleración tangencial y normal Suponemos un móvil puntual que se desplaza en un instante determinado con una velocidad. Este vector puede expresarse como el producto de su módulo por un vector unitario en la dirección y sentido de la velocidad, (por tanto, tangente a la trayectoria y sentido del movimiento), al que llamaremos

39 Por tanto la aceleración instantánea será: El segundo sumando representa la variación de la dirección de la velocidad y es la componente que llamamos aceleración normal. El primer sumando representa la variación del módulo de la velocidad y es por tanto la componente que llamamos aceleración tangencial Así tenemos:

40 Módulo : La aceleración tangencial a t, mide el cambios en el módulo de la velocidad, es un vector con las siguientes características Sentido: el mismo que el del movimiento si el módulo de la velocidad aumenta y contrario al movimiento si el módulo de la velocidad disminuye. Dirección: tangente a la trayectoria en todo punto, coincide la dirección del vector velocidad).

41 La aceleración normal o centrípeta, a n, mide el cambio en la dirección de la velocidad, aparece en movimientos curvilíneos, las características del vector aceleración normal son: Módulo, depende del radio y de la rapidez del movimiento Dirección, radial (perpendicular a la tangente a la trayectoria ) Sentido, siempre hacia el centro de la curvatura

42 Como las dos aceleraciones son perpendiculares entre sí, su composición vectorial permite obtener la aceleración total: El módulo de la aceleración será:


Descargar ppt "La cinemática es la parte de la física que estudia el movimiento de los cuerpos sin tener en cuenta las causas que lo producen ¿QUÉ ES LA CINEMÁTICA?"

Presentaciones similares


Anuncios Google