@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 3 * 4º ESO Opc B ECUACIONES Y SISTEMAS.

Slides:



Advertisements
Presentaciones similares
Ecuaciones de primer grado: resolución
Advertisements

TEMA 3: ECUACIONES Y SISTEMAS
ECUACIONES TRINOMIAS Son aquellas ecuaciones que constan de tres términos y son de la forma: Ejemplos: Las ecuaciones trinomias en las que el primer término.
Sesión 10 Tema: Ecuación 1° grado Carrera: Técnico en Electricidad
Racionalización Racionalizar es amplificar una fracción donde el denominador presenta una Raíz, con el fin de que ésta no aparezca. Ejemplos: ¿Qué es lo.
Ecuaciones 3º de ESO.
Solución de ecuaciones de primer grado.
ECUACIONES IRRACIONALES
TEMA 7 ECUACIONES. SISTEMAS DE ECUACIONES
Clase 5 x – 7 – 5 = – x Ecuaciones con x2+ 6x = x – 6 radicales.
Matemáticas Aplicadas CS I
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 Bloque I * Tema 012 ECUACIONES RADICALES.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 2 ECUACIONES Y SISTEMAS.
POLINOMIOS TEMA 2 * 4º ESO Opc Angel Prieto Benito
Matemáticas Acceso a CFGS
Una ecuación irracional es aquella en la que la incógnita aparece bajo el signo radical. Resolver la siguiente ecuación: Pasos a seguir en su resolución:
INECUACIONES Tema 4 * 4º ESO Opc Angel Prieto Benito
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 Bloque I * Tema 013 ECUACIONES LOGARÍTMICAS.
Bloque I * Tema 011 ECUACIONES Angel Prieto Benito
Matemáticas Acceso a CFGS
Apuntes Matemáticas 2º ESO
DÍA 13 * 1º BAD CT ECUACIONES EXPONENCIALES Y LOGARITMICAS
4º ESO Colegio Divina Pastora Toledo. 1. ECUACIONES DE PRIMER y SEGUNDO GRADO Resolver una ecuación es hallar sus soluciones, es decir, los valores que.
INECUACIONES Y SISTEMAS
INECUACIONES DE PRIMER Y SEGUNDO GRADO
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 1 * 4º ESO Opc B NÚMEROS REALES.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 TEMA 5 INECUACIONES Y SISTEMAS.
INECUACIONES Tema 4 * 4º ESO Opc Angel Prieto Benito
Otros Tipos de Ecuaciones
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 4 * 4º ESO Opc B INECUACIONES.
Matemáticas Aplicadas CS I
ECUACIONES IRRACIONALES
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 TEMA 4 ECUACIONES Y SISTEMAS.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 Tema 1 NÚMEROS REALES.
PRODUCTO ESCALAR DE VECTORES
POLINOMIOS TEMA 2 * 4º ESO Opc Angel Prieto Benito
ECUACIONES IRRACIONALES
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 3 * 4º ESO Opc B ECUACIONES Y SISTEMAS.
ECUACIONES Y SISTEMAS Tema 3 * 4º ESO Opc Angel Prieto Benito
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 TEMA 2 * 4º ESO Opc B POLINOMIOS.
ESPAD III * DÍA 12 ECUACIONES LINEALES.
Ecuaciones especiales
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 1 NÚMEROS REALES.
NÚMEROS REALES Tema 1 * 4º ESO Opc Angel Prieto Benito
Ecuaciones.
ECUACIONES IRRACIONALES
Matemáticas 1º Bachillerato CT
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 3 * 4º ESO Opc B ECUACIONES Y SISTEMAS.
Apuntes Matemáticas 1º ESO
Matemáticas II. Profesor: Ing. Yadhira M. Rangel Carrillo.
POLINOMIOS TEMA 2 * 4º ESO Opc Angel Prieto Benito
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 1 * 4º ESO Opc B NÚMEROS REALES.
En busca del valor perdido Más allá de los números: En busca del valor perdido Imagen de cicatrix bajo licencia Creative Commonscicatrix Resolviendo Ecuaciones.
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 3 * 4º ESO Opc B ECUACIONES Y SISTEMAS.
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 1 * 4º ESO Opc B NÚMEROS REALES.
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 TEMA 2 * 4º ESO Opc B POLINOMIOS.
ECUACIONES CON RADICALES
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 3 * 4º ESO Opc B ECUACIONES Y SISTEMAS.
Apuntes de Matemáticas 1º ESO
@ Angel Prieto BenitoApuntes de Matemáticas 1º ESO1 U.D. 9 * 1º ESO ECUACIONES.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 U.D. 2 MATEMÁTICA FINANCIERA.
@ Angel Prieto BenitoApuntes de Matemáticas 1º ESO1 U.D. 9 * 1º ESO ECUACIONES.
@ Angel Prieto BenitoApuntes de Matemáticas 1º ESO1 U.D. 9 * 1º ESO ECUACIONES.
Álgebra, ecuaciones y sistemas
TEMA 3:ÁLGEBRA Mª Ángeles Meneses Chaus. ÍNDICE 1.- Factorización de polinomios 2.- Fracciones algebraicas 3.- Resolución de ecuaciones: Ecuaciones de.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 U.D. 6 * 3º ESO E.Ap. Ecuaciones.
TEMA 6 ECUACIONES. Una ecuación expresa en lenguaje algebraico una relación entre cantidades cuyo valor no conocemos. Estas cantidades se expresan con.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 U. D. 6 * 4º ESO E. AC. INECUACIONES.
Matemáticas 1º Bachillerato CT
ECUACIONES U. D. 4 * 4º ESO E. Angel Prieto Benito
Transcripción de la presentación:

@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 3 * 4º ESO Opc B ECUACIONES Y SISTEMAS

@ Angel Prieto BenitoMatemáticas 4º ESO Opc B2 Tema 3.2c * 4º ESO Opc B ECUACIONES RADICALES

@ Angel Prieto BenitoMatemáticas 4º ESO Opc B3 ECUACIONES CON RADICALES ECUACIONES RADICALES Son aquellas en las que aparece la incógnita en alguno de sus términos, bajo el signo radical PROCEDIMIENTO DE RESOLUCIÓN Cuando aparezcan en una ecuación algebraica una sola raíz, cuadrada o no, se dejará ésta sola a un lado de la igualdad y se elevarán ambos términos a la potencia necesaria para que desaparezca la raíz. Habrá que aplicar los productos notables y posteriormente hallar las raíces de la ecuación resultante. Si hubiera dos o más raíces cuadradas, no es necesario agruparlas todas a un sólo lado de la igualdad antes de elevar ambos términos al cuadrado. Al elevar al cuadrado ambos términos de una igualdad, pueden aparecer otas soluciones distintas de las de la ecuación original.

@ Angel Prieto BenitoMatemáticas 4º ESO Opc B4 Ejemplo_1 √(3.x – 2) - 4 = 0 Se deja sola la raíz cuadrada: √(3.x – 2) = 4 Se elevan ambos términos al cuadrado: √(3.x – 2) 2 = x – 2 = 16 3.x = 18 x = 6 Y se comprueba el resultado obtenido: √(3.6 – 2) - 4 = 0 √(18 – 2) - 4 = 0 √ = 0 4 – 4 = 0

@ Angel Prieto BenitoMatemáticas 4º ESO Opc B5 Ejemplo_2 2. √ (x +4) = √ (5.x+4) Se elevan ambos términos al cuadrado: [2. √ (x + 4) ] 2 = [√ (5.x + 4) ] 2 4.(x + 4) = 5.x x + 16 = 5.x – 4 = 5.x – 4.x 12 = x Y se comprueba el resultado obtenido: 2. √ (12 +4) = √ (5.12+4) 2. √ 16 = √ (60 + 4) 2. 4 = √ 64 8 = 8

@ Angel Prieto BenitoMatemáticas 4º ESO Opc B6 Ejemplo_3 √ (2.x – 1) + √ (x + 4) = 0 √ (2.x – 1) = - √ (x + 4) Se elevan ambos términos al cuadrado: √ (2x – 1) 2 = [- √ (x + 4) ] 2 2.x – 1 = x x – x = x = 5 Y se comprueba el resultado obtenido: √ (2.5 – 1) + √ (5 + 4) = 0 √ (10 – 1) + √ 9 = 0 √ 9 + √ 9 = = 0 6 = 0, lo cual es falso. La única solución posible no es válida.

@ Angel Prieto BenitoMatemáticas 4º ESO Opc B7 Ejemplo_4 √ (2.x + 5) + √ (x + 7) = 6 Se deja una raíz a un lado: √ (2.x + 5) = 6 - √ (x + 7) Se elevan ambos términos al cuadrado: √ (2x + 5) 2 = [ 6 - √ (x + 7) ] 2 2.x + 5 = 36 – 12. √ (x + 7) + x + 7 Se deja sola la única raíz resultante: 2.x + 5 – 36 – x – 7 = - 12 √ (x + 7) x – 38 = - 12.√ (x + 7) Se elevan ambos términos al cuadrado: (x – 38) 2 = [- 12.√ (x + 7)] 2 x 2 – 76.x = 144.(x + 7)

@ Angel Prieto BenitoMatemáticas 4º ESO Opc B8 …. ejemplo_4 √ (2.x + 5) + √ (x + 7) = 6 Se opera: x 2 – 76.x – 144.x – 1008 = 0 x 2 – 220.x = 0 Se resuelve la ecuación de segundo grado resultante: 220 +/- √ (220 2 – ) 220 +/- 216 x = = /- √ (220 2 – ) 220 +/ x = = = Y se comprueba: x = 2  √ 9 + √ 9 = 6  = 6 Válida x = 218 √ √ 225 = 6  = 6 No es válida