FUNCIONES (1º Bachillerato)

Slides:



Advertisements
Presentaciones similares
Representación Gráfica de una función
Advertisements

Funciones En nuestra vida cotidiana tenemos experiencia con relación o correspondencias de magnitudes . Ejemplos : En un almacén , a cada producto le corresponde.
TEMA 11: APLICACIONES DE LA DERIVADA
Puntos de corte con los ejes
. Temas FUNCIONES, LÍMITES DE FUNCIONES y CONTINUIDAD
FUNCIONES Una función es una aplicación entre dos conjuntos A y B, tal que a cada elemento de A (conjunto original) le corresponde un único elemento de.
CLARITA NESSIM MAPA CONCEPTUAL FUNCIONES MATEMATICAS.
FUNCIONES.
FUNCIONES.
Funciones Presentado por: Tammy Roterman y Orli Glogower
CLASE FUNCIONES Y GRÁFICAS MTRO
Puntos de corte con los ejes
Unidad 8 Funciones.
Representación gráfica de funciones
GRÁFICA DE FUNCIONES DÍA 47b * 1º BAD CS
MATEMÁTICAS II 2º BACH CYT
FUNCIONES REALES. Introducción. Conceptos. Operaciones.
Representación gráfica de funciones
Clase 1.1 Repaso de funciones..
Guías Modulares de Estudio Matemáticas IV – Parte B
Funciones 1. Función 2. Características de las funciones
TEMA 2: FUNCIONES DE UNA VARIABLE. Función.Definición Regla que relaciona los elementos de dos conjuntos. A cada elemento del conjunto inicial le corresponde.
Funciones Psu Matemáticas 2012.
FUNCIONES. FUNCIONES ELEMENTALES.
Funciones Presentado por: Tammy Roterman y Orli Glogower
TEMA 3: Preliminares sobre Funciones reales
REPRESENTACIÓN GRÁFICA DE FUNCIONES RACIONALES.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 GRÁFICAS RACIONALES TEMA 13.5a * 2º BCT.
Formas de representación
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 LÍMITES Y CONTINUIDAD Tema 8.
FUNCIONES. FUNCIONES ELEMENTALES.. FUNCIONES FUNCIONES REALES DE VARIABLE REAL UNA FUNCIÓN f REAL DE VARIABLE REAL, es una correspondencia entre dos conjuntos.
GRÁFICA DE FUNCIONES RACIONALES
FUNCIÓN RACIONAL Lucas Picos.
FUNCIONES CUADRÁTICAS
TEMA 2: FUNCIONES DE UNA VARIABLE
Funciones.
Clasificación de funciones
GRAFICA DE FUNCIONES RACIONALES
Funciones PotenciaLES, exponenciales y logarítmicas.
Representación gráfica de funciones.
Tema XIII Aplicaciones de derivadas
Funciones. Concepto de función Dominio e imagen de una función
Representación gráfica de funciones
COMPOSICIÓN DE FUNCIONES
Funciones. Presentado por: Steffany Serebrenik, Hellen Kreinter y David Castañeda. Presentado a: Patricia Cáceres. Colegio Colombo Hebreo Grado Decimo.
FUNCIÓN EXPONENCIAL y FUNCIÓN LOGARITMICA
Tasa de variación media de una función
DÍA 50 * 1º BAD CT GRÁFICA DE FUNCIONES RACIONALES.
Tipos de Funciones..
QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS
Función de proporcionalidad inversa
. Temas FUNCIONES, LÍMITES DE FUNCIONES y CONTINUIDAD
Una relación es una conexión o correspondencia entre objetos o sujetos representada como un conjunto de pares ordenados.
Estudio y representación de funciones 4º ESO
FUNCIONES REALES PROPIEDADES GLOBALES
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 OTRAS GRÁFICAS TEMA 13.7a * 2º BCT.
FUNCIONES POLINÓMICAS Y RACIONALES. INTERPOLACIÓN.
@ Angel Prieto BenitoApuntes 2º Bachillerato CS1 APLICACIONES DE LAS DERIVADAS Tema 8 * 2º B CS.
@ Angel Prieto BenitoApuntes 2º Bachillerato CS1 APLICACIONES DE LAS DERIVADAS Tema 8 * 2º B CS.
. Temas FUNCIONES, LÍMITES DE FUNCIONES y CONTINUIDAD
Introducción al Cálculo Infinitesimal Tema 1: Conceptos básicos José R. Narro Introducción al Cálculo Infinitesimal Tema 1: Conceptos básicos José R. Narro.
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 FUNCIONES ELEMENTALES U.D. 6 * 1º BCT.
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 FUNCIONES ELEMENTALES U.D. 6 * 1º BCT.
FUNCIONES.
Damas chinas (Mzelle Laure)
Cálculo Diferencial.
F UNCIONES LICEO VILLA MACUL ACADEMIA DEPTO. DE MATEMÁTICA 4° MEDIO COMÚN PROF. LUCY VERA.
FUNCIONES. FUNCIONES REALES DE VARIABLE REAL UNA FUNCIÓN f REAL DE VARIABLE REAL, es una correspondencia entre dos conjuntos reales A y B, que asocia.
@ Angel Priet Benito Matemáticas Aplicadas CS I 1 Si tenemos una ecuación de la forma y = a.x 3 + b.x 2 + c.x + d, entonces podemos decir que es una función.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 FUNCIONES ELEMENTALES U. D. 11 * 4º ESO E. AC.
Transcripción de la presentación:

FUNCIONES (1º Bachillerato) Mª Jesús Arruego Bagüés

FUNCIONES FUNCIONES DADAS POR UNA GRÁFICA Para que funcione el enlace a WINFUN27 pon la carpeta en el disco C. Instala las fuentes Arial Unicode MS y Symbol FUNCIONES FUNCIONES DADAS POR UNA GRÁFICA FUNCIONES DEFINIDAS POR TABLAS EXPRESIÓN DE UNA FUNCIÓN DEFINICIÓN Y OPERACIONES CON FUNCIONES COMPOSICIÓN DE FUNCIONES. FUNCIÓN INVERSA FUNCIONES LINEALES, AFINES, CUADRÁTICAS. ESTUDIO Y GRÁFICA DE UNA FUNCIÓN

Ejes cartesianos y coordenadas de un punto GEOGEBRA Ejes de coordenadas son dos rectas perpendiculares que dividen al plano en cuatro cuadrantes Y I Cuadrante II Cuadrante El eje horizontal de llama eje OX o eje de abscisas P(x,y) y y el eje vertical se llama eje OY o eje de ordenadas x X O El punto O donde se cortan los dos ejes es el origen de coordenadas IV Cte III Cte Cada punto P del plano tiene un par de coordenadas (x,y) que lo definen

Definiciones básicas Una función liga dos variables a las que, habitualmente, de las llama x e y X Y O (x,y) x y x es la variable independiente y es la variable dependiente La función se denota por y=f(x) A cada valor de x le corresponde un único valor de y X Y O x y Esta grafica no representa una función. A determinadas x les corresponde más de una y

Definiciones básicas f : D IR x y Una función liga dos variables a las que, habitualmente, se las llama x e y DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Sea D un subconjunto de números reales, una función  f  de una variable es una correspondencia que asocia a cada número x que pertenece a D, uno y sólo un número real  y que pertenece a IR y que indicaremos y = f (x). f : D IR x y Diremos que D es el dominio de definición de la función f(x) La función se denota por y=f(x) x es la variable independiente A cada valor de x le corresponde un único valor de y y es la variable dependiente

Definiciones básicas IR f : D IR x y D 1 1 3 9 -2 4 ½ 1/4 -3 … … DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Sea D un subconjunto de números reales, una función  f  de una variable es una correspondencia que asocia a cada número x que pertenece a D uno y sólo un número real  y que pertenece a IR que indicaremos y = f (x). D IR La imagen del 1 es 1: f(1)=1 La imagen del 3 es 9: f(3)=9 …. -2 es una antiimagen de 4: f -1(4)={2, -2} 3 es una antiimagen de 9: f -1(9) = {3,-3} … 1 3 -2 ½ -3 … 1 9 4 1/4 … x es antiimagen de y y es la imagen de x Si f(x)=x2

OPERACIONES CON FUNCIONES Con las funciones también podemos operar: Función suma: (f+g)(x) = f(x) + g(x) Función resta: (f-g)(x) = f(x) - g(x) Función producto: (f.g)(x) = f(x) . g(x) Función cociente: ( g(x) ≠ 0 ) Ejemplo: Si f(x)=2x-3 y g(x)=x2-1 (f + g)(x) = f(x)+g(x) = 2x – 3 + x2 – 1 = x2 + 2x - 4 (f - g)(x) = f(x) - g(x) = 2x – 3 - x2 + 1 = - x2 - 2x - 2 (f . g)(x) = f(x) . g(x) = (2x – 3)(x2 – 1) = 2x3 - 3x2 - 2x + 3

COMPOSICIÓN DE FUNCIONES CON FUNCIONES También podemos tener una función de otra función: Llamaremos función compuesta de dos funciones f(x) y g(x), y la indicaremos (fog)(x), a la función f(g(x)). Se lee: “g compuesto con f” Asimismo, f compuesto con g: (gof)(x)=g(f(x)) Ejemplo: Si f(x) = 2x-1 y g(x) = (x-3)2 (gof)(x) = g(f(x)) = g(2x-1) = (2x-1-3)2 = (2x-4)2 = 4x2 - 16x +16 (fog)(x) = f(g(x)) = f((x -3)2) = 2 (x-3)2 – 1 = 2(x2-6x+9)-1 = 2x2-12x+17 En general, la composición de funciones no es conmutativa (gof)(x) ≠ (fog)(x)

FUNCIÓN INVERSA DE OTRA FUNCIÓN Si dadas dos funciones f(x) y g(x): (fog)(x)=x y además (gof)(x)=x Diremos que ambas funciones son inversas y lo indicaremos: f-1(x) = g(x) y g-1(x) = f(x) f-1(x) = g-1(x) = x2 Ejemplo: Si f(x) = x2 y g(x) = (gof)(x)=g(f(x))=g(x2)= (fog)(x)=f(g(x)) = f( )=

CÁLCULO DE LA FUNCIÓN INVERSA DE OTRA FUNCIÓN 1º Despejaremos x en función de y 2º Intercambiaremos las x con las y Ejemplo: Si

ESTUDIO Y GRÁFICA DE UNA FUNCIÓN

Características de la gráfica de una función Dominio de definición Puntos de corte con los ejes Simetrías Regiones (Signo) Monotonía (Crecimiento / Decrecimiento) Máximos y mínimos Tendencias Continuidad Asíntotas Concavidad/ Convexidad Puntos de inflexión Periodicidad Recorrido

Dominio de una función IR (a,b) Se llama dominio de definición de una función f(x), y se indica con Dom f(x), al conjunto de valores de x para los cuales existe la función, es decir, para los cuales existe f(x) X Y O IR (a,b) Dom f(x)= Recorrido= Se llama recorrido de una función f(x), al conjunto de valores que toma f(x)

Cómo calcular el dominio de una función WINFUN Si la función es: Su dominio es: Polinómica: IR Racional Ejemplo Irracional Ejemplo Ejemplo

Cómo calcular el dominio de una función WINFUN Si la función es: Su dominio es: Logarítmica Recuerda que sólo tienen logaritmo los números positivos Exponencial Trigonométrica IR IR-{k/2, k∊ℤ} IR

dominio de una función del tipo Buscaremos las x para las cuales Q(x)=0 WINFUN Sean las funciones: 3x+4=0 Buscamos las raíces del polinomio (en este caso, con la regla de Ruffini: El dominio de la función serán todos los números reales excepto esos valores de x para las cuales Q(x)=0 Ver gráfica

dominio de una función del tipo Buscaremos las x para las cuales P(x) sea positivo WINFUN Sean las funciones: Descomponemos en factores (para ello hallamos las raíces del polinomio por el procedimiento correspondiente) 2 3 x-2 - 0 + + + x-3 - - - 0 + (x-2)(x-3) + 0 - 0 + Estudiamos donde toma valores positivos El dominio de la función lo forman todos los números reales que hacen que el radicando sea positivo Ver gráfica

dominio de una función del tipo Sean las funciones: donde P(x) es un polinomio El dominio de la función lo forman todos los números reales donde g(x) es una función cualquiera El dominio de la función lo forman todos los números reales donde exista g(x). Coincidirá, pues, con el Dom g(x)

Puntos de corte de una función con los ejes de coordenadas WINFUN Si una función y=f(x) corta al eje OY, en ese punto x=0 A(0,a) Corte eje OY: x=0 y=f(0) y=a Si una función y=f(x) corta al eje OX, en ese punto y=0 Y Resolviendo esta ecuación Corte eje OX: 0=f(x) y=0 x=b x=c x=d x=e ... B(b,0) a C(c,0) D(d,0) b O c d e X E(e,0) Ejemplo

Vamos a hallar los puntos de corte de la siguiente función con los ejes de coordenadas WINFUN A(0,0) Corte eje OY: x=0 y= f(0) = 04-7.02+4.03-10.0 = 0 Corte eje OX: y=0 0=f(x) Resolviendo esta ecuación x = 0 x = -1 x = 2 x = -5 B(0,0) C(-1,0) D(2,0) E(-5,0) Ver gráfica

Vamos a hallar los puntos de corte de la siguiente función con los ejes de coordenadas WINFUN A(0,3) Corte eje OY: x=0 Corte eje OX: y=0 0=f(x) x4+9=0 Esta ecuación no tiene solución real Esta función no corta al eje de abscisas (OX) Ver gráfica

Vamos a hallar los puntos de corte de la siguiente función con los ejes de coordenadas WINFUN No existe el logaritmo de un número negativo. Por lo tanto Corte eje OY: x=0 l Esta función no corta al eje de ordenadas (OY) Corte eje OX: y=0 0=f(x) B(6,0) 2x-3=x+3 x = 6 Ver gráfica

Simetrías de una función Una función y=f(x) es simétrica respecto al eje OY si f(-x)=f(x) Una función y=f(x) es simétrica respecto al origen si f(-x)=-f(x) -x Y Y Y x y x -x y -x -y O x X X X O O f(-x) ≠ f(x) f(-x) ≠ -f(x) f(-x) = -f(x) f(-x) = f(x) No es simétrica ni respecto a OY ni respecto a O Simétrica respecto a OY Simétrica respecto a O

Vamos a estudiar las simetrías de una función Una función y=f(x) es simétrica respecto al eje OY si f(-x)=f(x) Una función y=f(x) es simétrica respecto al origen si f(-x)=-f(x) WINFUN f(-x) = f(x) y=f(x) es simétrica respecto al eje OY f(-x) = -f(x) y=f(x) es simétrica respecto al origen Ver gráficas f(-x) ≠ f(x) f(-x) ≠ - f(x) y=f(x) No es simétrica ni respecto a eje OY ni respecto al origen

Monotonía de una función: Crecimiento y decrecimiento x2 f(x1) x1 f(x2) x2 x1 x2 x1 x2 x1 O X Función creciente Función creciente Función decreciente Función decreciente x1 < x2 f(x1) < f(x2) x1 < x2 f(x1) > f(x2)

Máximos y mínimos de una función Máximo (absoluto) Y Máximo (relativo) Mínimos: A(a,f(a)) C(c,f(c)) E(e,f(e)) a c b O d e X mínimo (relativo) mínimo (relativo) Máximos: B(b,f(b)) D(d,f(d)) mínimo (absoluto) La función tiene dos máximos en x=b y en x=d La función tiene tres mínimos en x=a, en x=c y en x=e

Tendencias de una función ¿Qué valores toma la función al acercarnos a x=a? ¿Son los mismos si nos acercamos por la izquierda o por la derecha? Y Cuando x → a- y →b- d Cuando x → a+ y →d- b La notación matemática será: O a X Se lee: ” El límite cuando x tiende a a por valores más pequeños que a, es b” Cuando x →+∞ y → 0+ Cuando x →-∞ y → -∞

Límites laterales. Unicidad del límite de una función en un punto Y d b O a c X El límite de una función en un punto, si existe, es único Como los límites laterales coínciden, y es un número real, diremos que existe el límite: Como los límites laterales no coínciden, diremos que no existe el límite:

Estudio de la continuidad de una función en un punto Y d b c X O a e h g f(x) no es contínua en x=a DISCONTINUIDAD EVITABLE f(x) no es contínua en x=e DISCONTINUIDAD EVITABLE f(x) no es contínua en x=h DISCONTINUIDAD NO EVITABLE f(x) no es contínua en x=g DISCONTINUIDAD ASINTÓTICA

Continuidad de una función Diremos que una función y=f(x) es contínua en x=a si se cumplen las tres condiciones siguientes: 1º 2º 3º X Y a O b

Asíntotas de una función Asíntotas verticales Las asíntotas son rectas a las cuales la función se va aproximando indefinidamente, cuando por lo menos una de las variables (x ó y) tienden al infinito. Si diremos que la función tiene una asíntota vertical: x=a Y O a d Asíntotas horizontales Si X diremos que la función tiene una asíntota horizontal: y=d Asíntotas oblícuas

Signo de una función Polinómica: Racional Irracional Estudiar el signo de una función es hallar para que x la función toma valores positivos y para cuales negativos Si la función es: Polinómica: Ejemplo En general, estudiaremos donde la función es positiva. En el resto de su dominio será negativa. Racional Ejemplo Irracional Ejemplo Ejemplo

Signo de una función polinómica WINFUN Estudiar el signo de una función es hallar para que x la función toma valores positivos y para cuales negativos Función Polinómica: Donde P(x) es un polinomio Estudiaremos donde el polinomio toma valores positivos. En el resto serán negativos. Si y= -3x+4 Signo de y + - Si y= -x2+49 -7 7 x+7 - 0 + + + x-7 - - - 0 + (x+7)(x-7) + 0 - 0 + y + - -7 7

Signo de una función polinómica WINFUN Estudiar el signo de una función es hallar para que x la función toma valores positivos y para cuales negativos Función Polinómica: Donde P(x) es un polinomio Estudiaremos donde el polinomio toma valores positivos. En el resto serán negativos. Descomponemos en factores el polinomio (para ello hallamos las raíces del polinomio por el procedimiento correspondiente). En este caso resolvemos la ecuación bicuadrada Si y= x4-13x2+36 Estudiamos donde toma valores positivos -3 -2 2 3 x+3 - 0 + + + + x+2 - - 0 + + + x -2 - - - 0 + + x -3 - - - - 0 + y + 0 - 0 + 0 - 0 + y + - -3 -2 2 3

WINFUN El Signo de una función polinómica nos puede ayudar a dibujar la función Función Polinómica: X Y O NO y + - Si y= -3x+4 X Y O NO y + - -7 7 Si y= -x2+49 X Y O NO Si y= x4-13x2+36 y + - -3 -2 2 3

Signo de una función racional WINFUN Estudiar el signo de una función es hallar para que x la función toma valores positivos y para cuales negativos Donde P(x) y Q(x) son polinomios Función Racional: Estudiaremos donde la fracción toma valores positivos. En el resto serán negativos. Resolvemos la inecuacion correspondiente. Para ello descomponemos en factores el numerador y el denominador Si -3 0 4 x+3 - 0 + + + x - - 0 + + x -4 - - - 0 + y - ∄ + ∄ - 0 + Estudiamos donde toma valores positivos X Y O NO + - -3 0 4 ∄ y

Signo de una función irracional WINFUN Estudiar el signo de una función es hallar para que x la función toma valores positivos y para cuales negativos Función Irracional: Estudiaremos el signo de los valores que toma la raíz. NO Y y + ∄ NO O X -3 Y NO NO NO - - O X ∄ y Ejemplos 2 3

Signo de una función irracional WINFUN Estudiar el signo de una función es hallar para que x la función toma valores positivos y para cuales negativos Función Irracional: Estudiaremos el signo de los valores que toma la raíz. Dependerá en este caso del signo del radicando. El signo es el mismo que el de la función g(x). Y NO y + - NO O X -3 Y NO + + NO O NO X - y Ejemplos 2 3

Convexidad/Concavidad de una función Y O X Función cóncava Función cóncava Función convexa Función convexa No hay unanimidad en esta nomenclatura

Convexidad/Concavidad de una función Y a b c O d X X cóncava convexa a b c d cóncava convexa cóncava convexa cóncava Los puntos de la función en que ésta pasa a ser de cóncava a convexa y viceversa se llaman puntos de inflexión

Asíntotas oblícuas y=mx+n ¿m, n? En la recta Sea la función y=f(x) X O Cuando x tiende a infinito el valor de y en la recta y el valor de y en la función son prácticamente iguales.

Para representar graficamente una función estudiaremos primero: Y despues de hacer la gráfica estudiaremos: Dominio de definición Puntos de corte con los ejes Simetrías Regiones (Signo) Tendencias Continuidad Asíntotas Monotonía (Crecimiento /Decrecimiento) Máximos y mínimos Concavidad/ Convexidad Puntos de inflexión Periodicidad Recorrido Conocida la derivación, se hace primero todo el estudio y después la gráfica

Signo de una función irracional y + ∄ -3 Signo de una función irracional - - ∄ y 2 3

Signo de una función irracional y + - -3 + + - y 2 3

y=f(x) es simétrica respecto al eje OY y=f(x) No es simétrica ni respecto a eje OY ni respecto al origen y=f(x) es simétrica respecto al origen

A(0,3) B(0,0) C(-1,0) D(2,0) E(-5,0) B(6,0)

Estudio y gráfica de algunas funciones Son gráficas aproximadas. En 2º se estudiarán sus máximos y mínimos , crecimiento, puntos de inflexión,... con más rigor

ESTUDIO Y GRÁFICA DE LA FUNCIÓN f(x)=x3 -3x2+2x Dom f(x)=IR Simetrías: f(-x)= (-x)3-3(-x)2+2(-x) = -x3-3x2-2x ≠ ±f(x) ⇒ ∄simetrías Corte OY: x=0 ⇒ y=0 ⇒ (0,0) corte OX : y=0 ⇒ x3-3x2+2x=0 ⇒.. ⇒x=0, x=1, x=2 ⇒(0,0), (1,0), (2,0) Contínua (Todas las funciones polinómicas lo son) Asíntotas horizontales: Asíntotas verticales: ∄ Regiones: y>0 x(x-1)(x-2)>0 0 1 2 - 0 + 0 - 0 + Signo de y

ESTUDIO Y GRÁFICA DE LA FUNCIÓN f(x)=x3 -3x2+2x NO NO NO NO

ESTUDIO Y GRÁFICA DE LA FUNCIÓN f(x)=x3 -3x2+2x WINFUN Creciente (- ∞,a), (c, + ∞) Decreciente (a,c) Máximo (a,b), mínimo (c,d) Cóncava (1,+∞), convexa (- ∞,1) Punto de inflexión (1,0) Recorrido IR b d a c

ESTUDIO Y GRÁFICA DE LA FUNCIÓN Dom f(x)=IR - {-3} Simetrías: ⇒ ∄simetrías Corte OY: x=0 ⇒ y= -4 ⇒ (0, - 4) corte OX : y=0 ⇒ 4x - 12=0 ⇒x=3 ⇒(3,0) Discontínua: Pto de discontinuidad x=-3 (Discontinuidad asintótica) Asíntotas horizontales: Regiones: y>0 -3 3 + ∄ - 0 + Signo de y

ESTUDIO Y GRÁFICA DE LA FUNCIÓN NO NO NO

ESTUDIO Y GRÁFICA DE LA FUNCIÓN Creciente ∄Máximos ni mínimos Cóncava (-∞,-3), convexa (-3,+∞) ∄ Punto de inflexión Recorrido IR-{4} WINFUN

ESTUDIO Y GRÁFICA DE LA FUNCIÓN Dom f(x)=IR - {-1,1} ( x2-1=0  x=1 ) Simetrías: ⇒ simétrica respecto a O Corte OY: x=0 ⇒ y= 0 ⇒ (0, 0) corte OX : y=0 ⇒ x =0 ⇒(0,0) Discontínua: Ptos de discontinuidad x=±1 Discontinuidad asintótica en x=1 y en x=-1 Asíntotas horizontales:

ESTUDIO Y GRÁFICA DE LA FUNCIÓN Regiones: y>0 -1 0 1 x+1 - 0 + + 0 + x - - 0 + + x -1 - - - 0 + y - ∄ + 0 - ∄ + -1 0 1 - ∄ + 0 - ∄ + Signo de y NO NO Esta es una gráfica aproximada. En 2º se estudiarán sus máximos y mínimos ,... NO NO

ESTUDIO Y GRÁFICA DE LA FUNCIÓN Creciente (-∞,a)(b,+∞) Máximo (a,c) y mínimo (b,d) ¿Cóncava (-∞,-1)  (-1,0), convexa (1,+∞)  (0,1)?  Punto de inflexión : al menos (0,0) (Podría haber más) Recorrido IR WINFUN

ESTUDIO Y GRÁFICA DE LA FUNCIÓN Dom f(x)=IR Simetrías: ⇒ simétrica respecto a O Corte OY: x=0 ⇒ y= 0 ⇒ (0, 0) corte OX : y=0 ⇒ x =0 ⇒(0,0) Contínua Asíntotas verticales no tiene (El dominio es IR y es racional) Asíntotas horizontales: Asíntotas oblícuas: y=mx+n y=x - 0 + y Signo: y>0

ESTUDIO Y GRÁFICA DE LA FUNCIÓN NO WINFUN NO

ESTUDIO Y GRÁFICA DE LA FUNCIÓN -3 -1 1 x+3 - 0 + + + x +1 - - 0 + + x -1 - - - 0 + - 0 + 0 - 0 + Dominio. (x+3)(x+1)(x-1)0 Dom f(x)=[-3,-1][1,+) Simetrías: ⇒ ∄simetrías Corte OY: x=0 ∉ Dom f(x) corte OX : y=0 ⇒ x =1,x=-1, x=-3 ⇒(-3,0), (-1,0), (1,0) Contínua Asíntotas verticales no tiene Asíntotas horizontales: no tiene Signo: y>0 Siempre (Es positiva en todo su dominio)

ESTUDIO Y GRÁFICA DE LA FUNCIÓN NO NO NO

PÁGINAS DE RECURSOS: http://personal5.iddeo.es/ztt/ http://www.educa.rcanaria.es/matematicas/recursos_varios/index.htm

PÁGINAS WEB RELACIONADAS CON EL TEMA http://usuarios.lycos.es/calculo21/id401.htm (repaso de ecuaciones, inecuaciones, trigonometría, funciones …con ejercicios) http://descartes.cnice.mecd.es/matematicas_aplicadas/Funciones_en _la_Ciencia/index.htm http://descartes.cnice.mecd.es/Bach_HCS_1/Identificacion_funciones _d3/fun3.htm http://usuarios.lycos.es/JuanBeltran/index.htm (funciones) http://www.sectormatematica.cl/media/ecrecta.htm http://www.sectormatematica.cl/media/cuadratica.htm http://www.sectormatematica.cl/media/logaritmos.htm ASÍNTOTAS: http://thales.cica.es/rd/Recursos/rd99/ed99-0295-01/punto8/punto8.html