PROBABILIDAD.

Slides:



Advertisements
Presentaciones similares
AZAR Y PROBABILIDAD..
Advertisements

Bioestadística,2006.
DEFINICIONES       Experiencia Aleatoria: es aquella cuyo resultado depende del azar: ( lanzto de un dado, una moneda, extraer una bola, una carta, etc.)
De Morgan Probabilidad. Boole Bayes Laplace Kolmogorov.
Probabilidades Vamos a estudiar los conceptos de: Sucesos excluyentes
Probabilidades asignadas según la Regla de Laplace
comprobación de lectura
PROBABILIDAD CONDICIONAL
5° SEC Probabilidad.
PROBABILIDAD COMPUESTA
TIPOS DE EXPERIMENTOS:
Esther Capitán Rodríguez
PROBABILIDAD.
Probabilidades Yalide Guerra1. Es una característica que interviene en todo trabajo experimental. Es la creencia que se tiene de la ocurrencia de un suceso.
Probabilidades Primero Medio
CÁLCULO DE PROBABILIDADES
Apuntes de Matemáticas 3º ESO
E Experimentos aleatorios. Espacio muestral
Apuntes de Matemáticas 3º ESO
Matemáticas 2º Bachillerato CS
DISTRIBUCION DE PROBABILIDADES
Probabilidad. Variables aleatorias.
2. Probabilidad Dominar la fortuna
Teoría de Probabilidad
Ejemplos de Espacios de Probabilidad
PROBABILIDADES Yolanda y Alberto están jugando con un dado cuyas caras están numeradas del 1 al 6. Pero Alberto es muy tramposo y ha cambiado el dado por.
Apuntes de Matemáticas 3º ESO
DÍA 57 * 1º BAD CT PROBABILIDADES
PROBABILIDAD.
PROBABILIDAD.
PROBABILIDAD. REGLA DE LAPLACE DÍA 56 * 1º BAD CS
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 REGLA DE LAPLACE Bloque IV * Tema 167.
REGLA DE LAPLACE ESPAD III * TC 38.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 PROBABILIDAD CONDICIONADA Bloque IV * Tema 168.
PROBABILIDAD: TEORÍA BÁSICA + COMBINATORIA
Apuntes de Matemáticas 3º ESO
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 MATEMÁTICAS A. CS II Tema 11 * PROBABILIDADES.
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 PROBABILIDAD Tema 15.
Apuntes de Matemáticas 2º ESO
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 MATEMÁTICAS A. CS II Tema 11 * PROBABILIDADES.
Probabilidades Históricamente, el propósito original de la teoría de probabilidades se limitaba a la descripción y estudios de juegos de azar. Girolamo.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 CÁLCULO DE PROBABILIDADES TEMA 13.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 CÁLCULO DE PROBABILIDADES TEMA 13.
@ Angel Prieto BenitoMatemáticas 4º ESO Opción B1 PROBABILIDAD CONDICIONADA Y TOTAL Tema 16.4 * 4º ESO Opc B.
Probabilidades Objetivos de la clase Construidas definiciones básicas
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 MATEMÁTICAS A. CS II Tema 11 * PROBABILIDADES.
EXPERIMENTOS SIMPLES ESPAD III * TC 39.
Tema 2: ¡Eso depende! El azar depende de muchos factores.
Lic. Sandra Milena Pachón peralta Universidad Pedagógica Nacional
Combinatoria y Probabilidad
PROBABILIDADES 3º Medio, Octubre
PROBABILIDADES (Adaptación) Prof. José Mardones Cuevas
Problemas de Conteo.
TEMA 5 PROBABILIDAD.
Probabilidad: Es la medida de incertidumbre de la ocurrencia de un suceso Experimento Determinístico: Es aquel que podemos predecir su ocurrencia. Ej.
Apuntes Matemáticas 1º ESO
Técnicas de conteo: Producto, suma y diagrama de árbol
Diagramas de árbol Qué son y cómo se hacen.
Apuntes Matemáticas 1º ESO
PROBABILIDADES.
Tema : Probabilidad.
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 U.D. 15 * 1º ESO PROBABILIDAD.
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 U.D. 15 * 1º ESO PROBABILIDAD.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 PROBABILIDAD U.D. 13 * 1º BCS.
PROBABILIDADES CONDICIONADA, TOTALES Y TEOREMA DE BAYES
@ Angel Prieto Benito Matemáticas Acceso a CFGS 1 PROBABILIDAD COMPUESTA Bloque IV * Tema 169.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 PROBABILIDAD U. D. 13 * 4º ESO E. AC.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 PROBABILIDAD U.D. 13 * 1º BCS.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 PROBABILIDAD U. D. 13 * 4º ESO E. AC.
Matemáticas 2º Bachillerato CS
Transcripción de la presentación:

PROBABILIDAD

PROBABILIDAD CONDICIONADA

Probabilidad CONDICIONADA La probabilidad de un suceso A puede verse modificada si ha ocurrido previamente otro B. Para recoger esta influencia entre los sucesos se define la probabilidad de A condicionada por B, y se escribe P(A/B). Así, en el lanzamiento de dos dados, si se sabe que se han sacado puntuaciones pares (suceso B), la probabilidad de que ambas sean iguales (suceso A) se obtiene teniendo en cuenta que ahora son 9 los casos posibles y 3 los favorables. Puntuaciones pares e iguales 3 1 P(A/B) = -------------------------------------------- = ------ = ---- Puntuaciones pares 9 3 Definiéndose en general la probabilidad condicionada de un suceso A por otro B como el cociente: P(A ∩ B) P(A ∩ B) P(A/B) = -------------- o P(B/A) = ------------ P(B) P(A) Según el suceso B condicione al A o viceversa. Y siempre P(B)<>0, o P(A)<>0

Ejemplo 1 En un IES el 35% son varones y el 65% restante mujeres. De los varones, el 25% estudia ESO y el resto Bachillerato. De las mujeres, el 55% estudia ESO y el resto Bachillerato. Se elige un alumno al azar. a) ¿Cuál es la probabilidad de que sea mujer y estudie Bachillerato?. b) ¿Cuál es la probabilidad de que sea varón y estudie ESO?. Tenemos: P(V) = 35% = 35/100 = 0,35 V M P(M) = 65% = 65/100 = 0,65 P(E/V) = 25% = 25/100 = 0,25 E 8,75% 35,75% P(B/V) = 75% = 75/100 = 0,75 P(E/M) = 55% = 55/100 = 0,55 B 26,25% 29,25% P(B/M) = 45% = 45/100 = 0,45 a) P(M ∩ B) = P(M). P(B/M) = 0,65.0,45 = 0,2925 b) P(V ∩ E) = P(V). P(E/V) = 0,35.0,25 = 0,0875

Ejemplo 2 Si se considera el conjunto de todas las familias con tres hijos, halla la probabilidad de que seleccionada una familia al azar tenga: (A) Sólo dos niñas. (B) Al menos una niña. (C) Sólo una niña o sólo un niño. (D) Si se sabe que la familia tiene dos niñas, ¿qué probabilidad existe de que el otro hijo sea varón? RESOLUCIÓN Sea V el elemento del sexo varón y M el elemento del sexo mujer. Aplicamos el diagrama del árbol para hallar el espacio muestral. E = {(VVV), (VVM), (VMM), (MVV), (MVM), (MMV), (VMV), (MMM)} 1º Hijo 2º Hijo 3º Hijo V M V V V V V M V M V V M M M V V M V M M M V M M M

Suponemos que las probabilidades del nacimiento de V o de M son idénticas, con lo cual los sucesos elementales son equiprobables, gracias a lo cual podemos aplicar la Regla de Laplace. P(A) = 3 / 8 Pues son 3 los casos favorables frente a los 8 casos posibles o totales. P(B)= 7 / 8 Pues P(B) = 1 - P(VVV), aplicando los sucesos contrarios. P(C)= 3 / 8 + 3 / 8 Pues P(C) = P(AUA) = P(A) + P(A) P(D) =3 / 4 En este caso estamos ante un suceso condicionado. P(un varón y dos niñas) 3 / 8 3 P(1 V / 2 M) = ------------------------------------- = -------- = ----- P(dos niñas como mínimo) 4 / 8 4

Ejemplo 3 En una fiesta de cumpleaños el 20 % son adultos (A), el 30% son niños (V) y el resto niñas (M) . El 5%, 10 % y 25% respectivamente tienen el color de cabello rubio. Se elige una persona al azar. a) ¿Cuál es la probabilidad de que sea adulto rubio?. b) ¿Cuál es la probabilidad de que sea un niño no rubio?. c) ¿Cuál es la probabilidad de que sea una niña rubia?. Resolución: Probabilidades simples Probabilidades condicionadas P(A) = 20% = 20 / 100 = 0,20  P(R/A)= 5% = 0,05  P(R¯/A) = 95% =0,95 P(V) = 30% = 30 / 100 = 0,30  P(R/V)= 10% = 0,10  P(R¯/V) = 90% =0,90 P(M) = 50% = 50 /100 = 0,50  P(R/M)= 25% = 0,25  P(R¯/M) = 75% =0,75

Resolución: a) ¿Cuál es la probabilidad de que sea adulto rubio?. P(A ∩ R) = P(A). P(R/A) = 0,20.0,05 = 0,01 b) ¿Cuál es la probabilidad de que sea un niño no rubio?. P(V ∩ R¯) = P(V). P(R¯ /V) = 0,30.0,90 = 0,27 c) ¿Cuál es la probabilidad de que sea una niña rubia?. P(M ∩ R) = P(M). P(R/M) = 0,50.0,25 = 0,125 Si en lugar de porcentajes nos hubieran dado los cardinales, no hubiera hecho falta aplicar la probabilidad condicionada. Veamos los resultados tabulados: A V M R 1% 3% 12,5% R¯ 19% 27% 37,5% Podemos completar la tabla de resultados sin necesidad de calcular las probabilidades: 20 – 1 =19 ; 30 – 27 = 3 ; 50 – 12,5 = 37,5

PROBABILIDAD COMPUESTA

Probabilidad COMPUESTA Muchos experimentos se componen de dos o más sucesos consecutivos. En ese caso se llama probabilidad compuesta al producto de probabilidades. Sea A el primer suceso y B el segundo. Habrá que distinguir dos posibles situaciones: 1.- Que los sucesos A y B sean independientes entre sí. Es decir, que la probabilidad de que suceda B no tenga nada que ver con el resultado de A. P(A ∩ B) = P(A).P(B) Ejemplo 1 Al lanzar una moneda al aire y luego un dado, obtengamos Cara y un 5. P(C ∩ 5) = P(C).P(5) = (1/2).(1/6) = 1/12 = 0,0833 Puesto que el resultado del dado no depende del resultado de la moneda.

PROBABILIDAD COMPUESTA 2.- Que los sucesos A y B sean dependientes entre sí. Es decir, que la probabilidad de que suceda B esté condicionada, dependa, del resultado de A. P(A ∩ B) = P(A).P(B/A) Ejemplo 2 Tenemos una urna con 3 bolas blancas y 2 negras. Extraemos dos bolas al azar, una a continuación de la otra. Hallar la probabilidad de las dos sean negras. Sea A=“Obtener una bola negra en la primera extracción” Sea B=“Obtener una bola negra en la segunda extracción” 2 1 2 1 P(A ∩ B) = P(A).P(B/A) = -------- ------- = --- --- = 2/20 =1/10 = 0,10 2+3 1+3 5 4 En la segunda extracción, al suponer que ha resultado negra la primera bola, sólo tenemos una bola negra de las cuatro que quedan.

Ejemplo 3 Al lanzar una moneda al aire y luego un dado, obtengamos Cara y un 5. P(C ∩ 5) = P(C).P(5) = (1/2).(1/6) = 1/12 = 0,0833 Puesto que el resultado del dado no depende del resultado de la moneda. Ejemplo 4 Tenemos una urna con 3 bolas blancas y 2 negras. Extraemos dos bolas al azar, una a continuación de la otra. Hallar la probabilidad de las dos sean negras. Sea A=“Obtener una bola negra en la primera extracción” Sea B=“Obtener una bola negra en la segunda extracción” 2 1 2 1 P(A ∩ B) = P(A).P(B/A) = -------- ------- = --- --- = 2/20 =1/10 = 0,10 2+3 1+3 5 4 En la segunda extracción, al suponer que ha resultado negra la primera bola, sólo tenemos una bola negra de las cuatro que quedan.

Ejemplo 5 Se lanza al aire dos monedas. ¿Cuál es la probabilidad de obtener dos caras?. ¿Cuál es la probabilidad de obtener dos cruces?. ¿Y de obtener una cara y una cruz?. Espacio muestral: E={CC, CX, XC, XX} , vemos que se pueden producir cuatro sucesos o fenómenos. P(CC) = Sf/Sp = ¼ = 0,25 También: P(C∩C)=P(C).P(C)=0,5.0,5 = 0,25 P(XX) = Sf/Sp = ¼ = 0,25 También: P(X∩X)=P(X).P(X)=0,5.0,5 = 0,25 P(CCUXX) = Sf/Sp = 2/4 = 0,5 También: P(CCUXX)=P(CC)+P(XX)=0,25+0,25 = 0,5

Se lanza al aire dos dados exagonales. Ejemplo 6 Se lanza al aire dos dados exagonales. ¿Cuál es la probabilidad de obtener como suma un doce?. ¿Y de obtener un doble? ¿Y de obtener un 7 como suma? ¿Y de no obtener un 4? Espacio muestral: E={36 sucesos posibles} P(S=12) = Sf/Sp = 1/36 = 0,0277 P(Doble) = Sf/Sp = 6/36 = 0,1667 P(S=7) = Sf/Sp = 6/36 = 0,1667 _ P(S=4 ) = 1 – P(S=4) = 1 – 3/36 = 1 – 0,0833 = = 0,9167 1 2 3 4 5 6 7 8 9 10 11 12

Ejemplo 7 En una urna opaca hay 2 bolas Blancas, 3 Azules y 4 Negras. Se extraen dos bolas al azar sin reinserción. ¿Cuál es la probabilidad de que la primera sea B y la segunda N?. ¿ Cuál es la probabilidad de que las dos sean A? ¿Y de que una sea A y otra N?. Espacio muestral: E={B,B,A,A,A,N,N} P(B∩N) = P(B).P(N/B) = 2/9 . 4/8 = 8/72 = 1/9 = 0,1111 Nota: Al extraer la segunda bola hay 8 en la urna, no 9. P(A∩A) = P(A).P(A/A) = 3/9 . 3/8 = 9/72 = 1/8 = 0,125 P(ANUNA) = P(A∩N) + P(N∩A) = P(A).P(N) + P(N).P(A) = = 3/9 . 4/8 + 4/9 . 3/8 = 12/72 + 12/72 = 24/72 = 1/3 = 0,3333

Ejemplo 8 En una urna opaca hay 5 bolas Blancas, 3 Negras, 2 Rojas y 10 Verdes. Se extraen tres bolas al azar y sin reinserción. a)¿Cuál es la p. de que resulten en este orden: R  B  V?. b)¿Cuál es la p. de que las dos primeras sean B y la tercera R?. c)¿Cuál es la p. de que todas sean N?. d)¿Cuál es la p. de que ninguna sea Roja?. Espacio muestral: E={5xB, 3xN, 2xR, 10xV} a) P(R∩B∩V) = P(R).P(B/R).P(V/B) = 2/20 . 5/19 . 10/18 = 0,01462 b) P(B∩B∩R) = P(B).P(B/B).P(R/B) = 5/20 . 4/19 . 2/18 = 0,005848 c) P(N∩N∩N) = P(N).P(N/N).P(N/N) = 3/20 . 2/19 . 1/18 = 0,000874 d)_ _ _ _ _ _ P(R∩R∩R) = P(R).P(R).P(R) = 18/20 . 17/19 . 16/18 = 0,7158

Ejemplo 9 En una urna opaca hay 2 bolas Blancas, 3 Azules y 4 Negras. Se extraen dos bolas al azar con reinserción. ¿Cuál es la probabilidad de que la primera sea B y la segunda N?. ¿ Cuál es la probabilidad de que las dos sean A? ¿Y de que una sea A y otra N?. Espacio muestral: E={B,B,A,A,A,N,N} P(B∩N) = P(B).P(N) = 2/9 . 4/9 = 8/81 = 0,09876 Nota: Al extraer la segunda bola se ha devuelto la primera a la urna. P(A∩A) = P(A).P(A) = 3/9 . 3/9 = 9/81 = 1/9 = 0,1111 P(ANUNA) = P(A∩N) + P(N∩A) = P(A).P(N) + P(N).P(A) = = 3/9 . 4/9 + 4/9 . 3/9 = 12/81 + 12/81 = 24/81 = 8/27 = 0,2963 Nota: Al haber reinserción, no hay probabilidad condicionada.