Unidad Didáctica Electricidad, electromagnetismo y medidas 3º ESO.

Slides:



Advertisements
Presentaciones similares
TEMA 5 ELECTRICIDAD Y ELECTROMAGNETISMO
Advertisements

MAGNITUDES FUNDAMENTALES
Unidad Didáctica Electricidad, electromagnetismo y medidas
Electricidad Tecnología E.S.O. (Primer ciclo).
El circuito eléctrico Es el recorrido por el que circulan los electrones. Consta al menos de: un generador, un conductor, un interruptor y un receptor.
Electricidad y energía
LA ELECTRICIDAD.
Parte II – Electrocinética Por: Ing. Nelson Velásquez
ELECTRICIDAD Y ELECTRÓNICA
ELECTRICIDAD Y ELECTRÓNICA Lucía López Rodríguez
Tecnología E.S.O. (Primer ciclo) ELECTRICIDAD.
ELECTRICIDAD Y ELECTRÒNICA
Utilizamos la electricidad para producir luz, energía mecánica (con motores), calor, hacer que funcionen nuestros ordenadores, televisores, etc.
GENERALIDADES DEL CIRCUITO ELECTRICO.
Magnitudes Eléctricas.
Electricidad.
Electricidad.
UNIDADES.
LA CORRIENTE ELÉCTRICA
JENNIFER DAYANNA PARRA CASTAÑO MANTENIMIENTO DE COMPUTADORES
UNIVERSIDAD CATÓLICA SAN ANTONIO. MURCIA UNIVERSIDAD LA FLORIDA. CATARROJA, VALENCIA. 15 y 16 de mayo de 2003 TECNOLOGÍA 1º E.SO ELECTRICIDAD.
PRESENTADO POR : Ana Hernández 1106
LEY DE ohm La Ley de Ohm establece que "la intensidad de la corriente eléctrica que circula por un conductor eléctrico es directamente proporcional a la.
ELECTRICIDAD SANDRA MILENA DIAZ CASTRO R I ANESTESIOLOGIA
Electricidad y Electrónica
ELECTRICIDAD. Como se recordará, la materia está constituida por moléculas, que a su vez están constituidas por átomos. El átomo, lo forman un núcleo.
MEDICIONES ELECTRICAS. Con que medimos Con el Multimetro (Tester), que es un instrumento de mediciones eléctricas, que tiene incorporado el amperímetro,
Circuitos eléctricos Módulo: Electrotecnia Juan Amigo S. Mecánica Industrial Año 2013.
Electricidad Definición Circuitos eléctricos Magnitudes Ley de OHM Cálculo de resistencias en serie, paralelo y mixto. Potencia.
PPTCEL002FS11-A16V1 Clase Electricidad II: circuitos eléctricos.
Magnitudes básicas de un circuito eléctrico. MAGNITUDES ELÉCTRICAS Voltaje Tensión Diferencia de potencial (V) Intensidad (A) Resistencia (R) LEY DE OHM.
AMISTAD CON DIOS… “VUELVE AHORA EN AMISTAD CON EL, Y TENDRAS PAZ Y POR ELLO TE VENDRA BIEN” “VUELVE AHORA EN AMISTAD CON EL, Y TENDRAS PAZ Y POR ELLO TE.
Beatriz Planelles – IES Pedro de Luna ELECTRICIDAD 3º ESO.
Electrodinámica. La electrodinámica es la rama de la Física que estudia las cargas eléctricas en movimiento (corriente eléctrica).
Ley de Ohm Mientras mayor es la resistencia menor es la corriente y viceversa. Este fenómeno da como resultado la ley de Ohm.
ELECTRICIDAD QUE ES__MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF.
TRABAJO DE LA ELECTRICIDAD Y EL MAGNETISMO
ELECTRICIDAD.
Intensidad de corriente eléctrica
Circuitos Eléctricos JAVIER PIQUER CARAPETO
Departamento de Tecnología
Electricidad y circuitos
ELECTROSTÁTICA.
LEY DE OHM.
Instalaciones eléctricas
3era.clase de Electricidad
Edgar Estrada Taboada Docente
Instalaciones eléctricas
2da.clase de Electricidad
Magnitudes básicas de un circuito eléctrico.
Electricidad y electrónica se basan en el movimiento de electrones Y se diferencian en que: LA ELECTRICIDAD precisa de un uso masivo de electrones. LA.
Capítulo 29 – Campos magnéicos Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University © 2007.
TECNOLOGIA 3º ESO TEMA 5 ELECTRICIDAD Y ELECTROMAGNETISMO.
CIRCUITO BASICO + _ FUENTE DE ENERGIA SWITCH RESISTENCIA CONDUCTOR VOLTAJE = FUERZA.
Ensamble y mantenimiento de computadoras.  Protones: son partículas con carga positiva (+)  Neutrones: son partículas sin carga (0).  Electrones: son.
LA ELECTRICIDAD Y SUS APLICACIONES
3º ESO Tema 5. CIRCUITOS ELÉCTRICOS..
Electricidad, electromagnetismo y medidas
EL MAGNETISMO -Es un fenómeno en el que los materiales ejercen fuerzas de atracción hacia otros materiales. -Materiales con propiedades magnéticas: níquel,
CORRIENTE CONTINUA Unidad Contenidos (1) 1.-Carga eléctrica. Conservación.Carga eléctrica 2.-Corriente continua. Diferencia de potencial. Intensidad.Corriente.
Colegio Ntra. Sra. del Buen Consejo (Agustinas)
7.1 Corriente eléctrica y densidad de corriente. 7.2 Resistencia y ley de Ohm. 7.3 Energía en los circuitos eléctricos. 7.4 Asociación de resistencias.
CAMPO MAGNÉTICO.
7.1 Corriente eléctrica y densidad de corriente. 7.2 Resistencia y ley de Ohm. 7.3 Energía en los circuitos eléctricos. 7.4 Asociación de resistencias.
Campo Eléctrico Campo Eléctrico en la materia Corriente Eléctrica
TECNOLOGIA 2º ESO TEMA 9 ELECTRICIDAD.
La adquieren los cuerpos
EL MAGNETISMO -Es un fenómeno en el que los materiales ejercen fuerzas de atracción hacia otros materiales. -Materiales con propiedades magnéticas: níquel,
7.1 Corriente eléctrica y densidad de corriente. 7.2 Resistencia y ley de Ohm. 7.3 Energía en los circuitos eléctricos. 7.4 Asociación de resistencias.
7.1 Corriente eléctrica y densidad de corriente. 7.2 Resistencia y ley de Ohm. 7.3 Energía en los circuitos eléctricos. 7.4 Asociación de resistencias.
Transcripción de la presentación:

Unidad Didáctica Electricidad, electromagnetismo y medidas 3º ESO

Corriente eléctrica Corriente continua Corriente alterna Electrodomésticos

Valores de la c.a. Valor máximo (Vmax): es el valor de cresta o pico, puede alcanzar hasta ± 325 V Valor instantáneo (Vi): Es el valor que toma la corriente en un momento determinado. Vi = Vmax * sen (ωt). Valor eficaz (Vef): Es el valor de corriente continua que produce el mismo efecto. Vef = Vmax / √2 Periodo (T): Es el tiempo que tarda en producirse un ciclo completo. La frecuencia (F): Es el número de ciclos que se producen en 1 segundo. F = 1/T

Magnitudes Eléctricas La carga eléctrica (q) de un cuerpo expresa el exceso o defecto de electrones que hay en sus átomos. Su unidad es el Culombio (C). 1 Culombio equivale a 6,25 x10 18 electrones. La intensidad (I), es la cantidad de carga eléctrica que circula por un conductor en una unidad de tiempo. I = q /t Amperios = Culombios /segundo Para que los electrones se desplacen por un conductor es necesaria una diferencia de potencial o fuerza electromotriz (V) entre sus extremos. Su unidad es el Voltio. La resistencia (R), es la dificultad que opone un cuerpo al paso de los electrones. Su unidad es el Ohmio (Ω), Donde: R es el valor de la resistencia en ohmios (  ) es la resistividad del material ( ) L la longitud del elemento. S la sección del elemento.

Resistividad de materiales Materialresistividad ( )Unidades Plata0,01 Cobre0,0172 Oro0,024 Aluminio0,0283 Hierro0,1 Estaño0,139 Mercurio0,942 MaderaDe 108 x 10 6 a x 10 6 Vidrio

Ley de Ohm La Intensidad que circula por un circuito es proporcional a la tensión que aplicamos en él e inversamente proporcional a la resistencia que opone a dicha corriente. Esto se expresa con la fórmula: Ejemplo: Ejemplo de c.a.:

Potencia eléctrica La potencia eléctrica que puede desarrollar un receptor eléctrico se puede calcular con la fórmula: Donde: P es la potencia en vatios (W). V es el voltaje (V). I es la intensidad (A). La potencia en corriente alterna es: Donde la potencia depende del voltaje al cuadrado y de la inversa de la resistencia del receptor. Otra forma de expresarlo:Más formas de expresarlo: Donde la potencia depende de la corriente al cuadrado que circula por el receptor y de la resistencia.

Energía eléctrica Cuando tenemos el receptor conectado durante un tiempo lo que necesitamos conocer es la energía que consume. Donde: E es la energía en Julios (J). P es la potencia en vatios (W). t es el tiempo en segundos (s). La energía se suele expresar en KW·h

Circuito serie La resistencia total del circuito es la suma de las resistencias que lo componen. Se caracteriza por: La corriente que circula es la misma por todos los elementos. La fuerza electromotriz generada por el generador se reparte entre los distintos elementos.

Circuito paralelo Se caracteriza por: La inversa de la resistencia total del circuito es la suma de las inversas de las resistencias que lo componen. Otra forma de expresar la resistencia total cuando son dos los elementos es: La corriente total que sale del generador se reparte por todos los elementos. La fuerza electromotriz generada por el generador llega por igual a todos los elementos.

Circuito mixto

Introducción al electromagnetismo Propiedades de los materiales magnéticos: 1.- Atraen al hierro, y otros metales como cobalto, níquel y sus aleaciones. 2.- Orientan sus moléculas en la misma dirección. 3.- Crean dos polos opuestos en sus extremos, y de ellos salen líneas de fuerza que van de uno al otro.

Propiedades de los materiales magnéticos 4.- Cuando enfrentamos dos polos de distinto tipo se atraen. 5.- Cuando enfrentamos dos polos del mismo tipo se repelen. 6.- Los polos norte y sur no se pueden separar. Si se parte un trozo del material, cada trozo vuelve a ser un imán con polo norte y sur. 7.- Sus propiedades atraviesan objetos como papel, madera, plásticos, etc. 8.- Si frotamos un objeto de acero con un imán, el objeto adquiere las propiedades magnéticas del imán y se comporta como tal.

Propiedades de los materiales magnéticos Los imanes tienen un campo magnético que los rodea, es muy fácil observarlo si dejamos limaduras de hierro cerca del imán que se sitúan sobre las líneas de fuerza del mismo. Hace más de dos mil quinientos años, los chinos ya conocían estas propiedades y crearon la primera brújula al concebir la tierra como un enorme imán.

Electromagnetismo La corriente genera campo magnético El campo magnético genera corriente eléctrica

Aplicaciones, electroimán

Aplicaciones, relé Símbolos de relés

Aplicaciones, máquinas lineales Generador lineal Motor lineal

Aplicaciones, alternador símbolo

Aplicaciones, dinamo y motor de corriente continua símbolos

Aplicaciones, transformador P 1 = P 2 V 1 * I 1 = V 2 *I 2 V 1 / V 2 = I 2 / I 1 = m (relación de transformación). N 1 / N 2 = V 1 / V 2 = m (relación de transformación).

Aparatos de medida Óhmetro conexionado VoltímetroAmperímetro

Polímetro, multímetro, tester

Conexionado del polímetro 1º.- Encender el polímetro. 2º.- Seleccionar la parte en la que queremos realizar la medición (Voltímetro, Amperímetro, Óhmetro). 3º.- Comprobar que las puntas están en los terminales correctos, en caso contrario colocarlas. 4º.- Seleccionar el valor más alto de la escala que queremos medir, con el selector. 5º.- Conectar las puntas en el lugar adecuado del circuito o resistencia. 6º.- Mover el selector bajando de escala hasta que la lectura sea posible en el display.