LA CIRCUNFERENCIA SUS ELEMENTOS Y ÁNGULOS.

Slides:



Advertisements
Presentaciones similares
BIENVENIDO A NUESTRA CLASE DE MATEMATICA
Advertisements

tema1TRAZADOS FUNDAMENTALES EN EL PLANO
REPASO CAPITULO 8 EN ESPAÑOL PARA 10MO GRADO SEGUNDO SEMESTRE
EJERCICIOS DE GEOMETRÍA MÉTRICA
TRANSFORMACIONES GEOMETRICAS
EJERCICIOS DE GEOMETRÍA MÉTRICA
Triángulos y cuadriláteros Polígonos regulares
Bases de la geometría Haroldo Cornejo Olivarí
Geometría Es la parte de las Matemáticas que estudia las propiedades de los cuerpos en el plano y en el espacio. Por Aida.
Geometría Es la parte de las Matemáticas que estudia las propiedades de los cuerpos en el plano y en el espacio. Por Aida.
GEOMETRÍA: PROBLEMAS Prof. Ana Cabrera I.F.D. Florida
Geometría. Paula Morel 2ºa.
Propiedades de los Triángulos y los Cuadriláteros.
PROPIEDADES – PROBLEMAS RESUELTOS
PROF: JAIME QUISPE CASAS I.E.P.Nº 2874 Ex
El arco AB corresponde al ángulo central se llama arco central.
ÁNGULOS EN LA CIRCUNFERENCIA
PROF: JAIME QUISPE CASAS
LA CIRCUNFERENCIA R.
OBSERVA ESTO.
TRIÁNGULOS.
Departamento de Matemáticas
POLÍGONOS ABRAHAM GARCIA ROCA
PROF: JAIME QUISPE CASAS I.E.P.Nº 2874 Ex
ÁREAS Y PERÍMETROS DE LOS CUERPOS ELEMENTALES
PROLEMAS RESUELTOS Y PROPUESTOS
PROBLEMAS DE GEOMETRÍA
Observamos que sus lados son proporcionales:
GUÍAS DE APRENDIZAJE DE LA ETAPA 4 DE GEOMETRÍA N°4.1 - Nº4.2
PROPIEDADES – PROBLEMAS RESUELTOS
Circunferencia y círculo
CIRCUNFERENCIA.
Ángulos en la circunferencia
SEMEJANZA Y PROPORCIONALIDAD
Nombres: Paula mena Frederick Manzo 4°A
- CIRCUNFERENCIA -  .
Recordar: Perímetro : Área:.
POSICIONES RELATIVAS DE DOS
CIRCUNFERENCIA POR
CLASE 172 ÁNGULOS EN LA CIRCUNFERENCIA.
PROPIEDADES – PROBLEMAS RESUELTOS
ÁNGULOS DE LA CIRCUNFERENCIA
LA CIRCUNFERENCIA SUS ELEMENTOS Y ÁNGULOS.
Seminario Virtual Prof. Guillermo García Bazán.  m =  Resolver la ecuación de recta que pasa por los puntos (4;4) (0;0) Sol: m = Y = X GEOMETRÍA ANALÍTICA.
Presentación tema de Geometría: “ CUADRILATEROS”
Triángulos II Prof. Isaías Correa M..
«ÁNGULOS EN LA CIRCUNFERENCIA»
CLASE 171 ÁNGULOS EN LA CIRCUNFERENCIA.
REPASO Prof. Guillermo García Bazán
Circunferencia y Círculo
PROPIEDADES – PROBLEMAS RESUELTOS
CIRCUNFERENCIA TEORÍA PROPIEDADES.
CIRCUNFERENCIA PROBLEMAS DE APLICACIÓN.
LA CIRCUNFERENCIA SUS ELEMENTOS Y ÁNGULOS.
TEOREMAS FUNDAMENTALES DE LA CIRCUNFERENCIA
EJERCICIOS DE GEOMETRÍA MÉTRICA
PROF: JAIME QUISPE CASAS I.E.P.Nº 2874 Ex
CIRCUNFERENCIA Y CÍRCULO
Proporcionalidad en la circunferencia
CIRCUNFERENCIA PROPIEDADES BÁSICAS.
EJERCICIOS RESUELTOS UNIDAD 9
Recuerda. La circunferencia
CIRCUNFERENCIA Y CÍRCULO Profesor : Carlos E. Hernández Hernández Grado: 2do de Secundaria 2011.
Circunferencia y circulo
ABRAHAM GARCÍA ROCA CIRCUNFERENCIA TEORÍA PROPIEDADES – PROBLEMAS RESUELTOS.
CIRCUNFERENCIA TEORÍA PROPIEDADES – PROBLEMAS RESUELTOS.
PROPIEDADES – PROBLEMAS RESUELTOS Viviana Novoa Cifuentes
CIRCUNFERENCIA.
MAGÍSTER EN GESTIÓN JUAN CARLOS CHACHICO YURIVILCA CIRCUNFERENCIA TEORÍA PROPIEDADES – PROBLEMAS RESUELTOS.
Transcripción de la presentación:

LA CIRCUNFERENCIA SUS ELEMENTOS Y ÁNGULOS

Otros elementos de la circunferencia Flecha o sagita Q  P Recta secante Cuerda PQ Arco BQ A B  T  Punto de tangencia Recta tangente

PROPIEDADES BÁSICAS EN LA CIRCUNFERENCIA 01.-Radio trazado al punto de tangencia es perpendicular a la recta tangente. R L

02.- Radio o diámetro perpendicular a una cuerda la biseca (divide en dos segmentos congruentes). P Q M N R

03.-Cuerdas paralelas determinan arcos congruentes entre las paralelas. B C D Si : AB // CD  m AC = m DC

Las cuerdas equidistan del centro 04.- A cuerdas congruentes en una misma circunferencia les corresponden arcos congruentes. A B C D Cuerdas congruentes Arcos congruentes Las cuerdas equidistan del centro

R r d = Cero ; d : distancia 01.- CIRCUNFERENCIAS CONCENTRICAS.- Tienen el mismo centro. R r d = Cero ; d : distancia

02.- CIRCUNFERENCIAS EXTERIORES.- No tienen punto en común. Distancia entre los centros (d) d > R + r

03. - CIRCUNFERENCIAS TANGENTES EXTERIORES 03.- CIRCUNFERENCIAS TANGENTES EXTERIORES.- Tienen Un punto común que es la de tangencia. Punto de tangencia R r R r Distancia entre los centros (d) d = R + r

04. - CIRCUNFERENCIAS TANGENTES INTERIORES 04.- CIRCUNFERENCIAS TANGENTES INTERIORES.- Tienen un punto en común que es la de tangencia. Punto de tangencia R r R d d = R - r d: Distancia entre los centros

R r ( R – r ) < d < ( R + r ) 05.- CIRCUNFERENCIAS SECANTES.- Tienen dos puntos comunes que son las intersecciones. R r Distancia entre los centros (d) ( R – r ) < d < ( R + r )

06. - CIRCUNFERENCIAS ORTOGONALES 06.- CIRCUNFERENCIAS ORTOGONALES.- Los radios son perpendiculares en el punto de intersección. R r Distancia entre los centros (d) d2 = R2 + r2

07.- CIRCUNFERENCIAS INTERIORES.- No tienen puntos comunes. d d < R - r d: Distancia entre los centros

PROPIEDADES DE LAS TANGENTES 1.- Desde un punto exterior a una circunferencia se puede trazar dos rayos tangentes que determinan dos segmentos congruentes. A B R  P AP = PB

2.- TANGENTES COMUNES EXTERIORES.- Son congruentes B R r C D AB = CD

3.- TANGENTES COMUNES INTERIORES.- Son congruentes. B R C D r AB  CD

a + b = c + 2r a + b = 2 ( R + r ) b a r R c TEOREMA DE PONCELET.- En todo triángulo rectángulo, la suma de longitudes de catetos es igual a la longitud de la hipotenusa mas el doble del inradio. a b c Inradio r Circunradio R a + b = c + 2r a + b = 2 ( R + r )

TEOREMA DE PITOT.- En todo cuadrilátero circunscrito a una circunferencia, se cumple que la suma de longitudes de los lados opuestos son iguales. d a b c Cuadrilátero circunscrito a + c = b + d

TEOREMA.- En todo cuadrilátero inscrito a una circunferencia, se cumple que la suma de los ángulos opuestos son suplementarios Cuadrilátero inscrito     α +  = 180º  +  = 180º

ANGULOS EN LA CIRCUNFERENCIA

Ángulos Características El vértice del ángulo central coincide con el centro de la circunferencia. El vértice del ángulo interior es un punto interior a la circunferencia. El vértice del ángulo inscrito es un punto de la circunferencia y los lados son rectas secantes. El vértice del ángulo semi-inscrito es un punto de la circunferencia y los lados son una recta secante y otra tangente a la circunferencia. El vértice del ángulo exterior es un punto exterior a la circunferencia y los lados pueden ser: Rectas secantes Una recta secante y la otra tangente Rectas tangentes Ángulo central Ángulo interior Ángulo inscrito Ángulo semi-inscrito Ángulos exteriores

1. - MEDIDA DEL ÁNGULO CENTRAL 1.- MEDIDA DEL ÁNGULO CENTRAL.- Es igual a la medida del arco que se opone. A B C r   = mBA

2. - MEDIDA DEL ÁNGULO INSCRITO 2.- MEDIDA DEL ÁNGULO INSCRITO.- Es la mitad de la medida del arco opuesto. A B C 

4. - MEDIDA DEL ÁNGULO SEMI-INSRITO 4.- MEDIDA DEL ÁNGULO SEMI-INSRITO.- Es igual al medida del arco opuesto. A B C 

4. - MEDIDA DEL ÁNGULO EX-INSCRITO 4.- MEDIDA DEL ÁNGULO EX-INSCRITO.- Es igual a la mitad de la medida del arco ABC. A B C 

5. - MEDIDA DEL ÁNGULO INTERIOR 5.- MEDIDA DEL ÁNGULO INTERIOR.- Es igual a la semisuma de las medidas de los arcos opuestos B D A C 

  + mBA = 180° 6.-ÁNGULOS EXTERIORES.- Son tres casos: A C O B a.- Medida del ángulo formado por dos rectas tangentes.- Es igual a la semidiferencia de las medidas de los arcos opuestos. A B C O   + mBA = 180°

b. - Ángulo formado por dos rectas secantes b.- Ángulo formado por dos rectas secantes.- Es igual a la semidiferencia de la medida de los arcos opuestos. A B C O D 

c. - Medida del ángulo formado por una recta tangente y otra secante c.- Medida del ángulo formado por una recta tangente y otra secante.- Es igual a la semidiferencia de las medidas de los arcos opuestos. A B C O 

Algunas propiedades importantes……. 1.- Toda recta tangente a una circunferencia es perpendicular al radio en su punto de tangencia A P AB  OP B O 2.- Si de un punto ¨P¨ exterior a una circunferencia. Se dibujan 2 segmentos tangentes a la circunferencia llamados PA y PB , estos segmentos resultan congruentes A P PA  PB B

Algunas propiedades importantes…….. 3.- Todo diámetro perpendicular a una cuerda es simetral y bisectriz del ángulo del centro comprendido entre los extremos de la cuerda. A AB  CD entonces: CE  ED  COE   EOD O C E D B 4.- En toda circunferencia a ángulos del centro congruentes le corresponden cuerdas y arcos congruentes. B A  O AB  CD  D C

Algunas propiedades importantes…….. 5.-En una circunferencia , cuerdas congruentes equidistan del centro. B A AB  CD  OE = OF O D C 6.- Los arcos comprendidos entre rectas paralelas o cuerdas paralelas son congruentes. A B AB // CD  arc AB  arc CD C D

Algunas propiedades importantes…….. 7.- Todos los ángulos inscritos que abarcan el mismo arco de circunferencia, son iguales g 2g 90º 180º Todos los ángulos inscritos que abarcan un mismo diámetro, son rectos. Teorema de Thales

RELACIONES MÉTRICAS EN LA CIRCUNFERENCIA

Teorema 1 Si desde un punto exterior P se trazan dos rectas tangentes a la circunferencia PA y PB. Entonces al unir dicho punto exterior con el centro de una circunferencia O, se determina que m  1 = m  2 y que PB  PA.

Teorema 2 Al trazar dos secantes desde un punto exterior, el producto de un segmento secante con su respectivo segmento exterior es igual al otro segmento secante con su respectivo segmento exterior.

Teorema 3 Si desde un punto exterior a una circunferencia se traza una recta tangente y una recta secante, entonces: El cuadrado del segmento tangente en igual al producto del segmento secante por el segmento exterior.

Teorema 4 Si se trazan dos cuerdas que se cortan dentro de una circunferencia: El producto de los dos segmentos formados por una cuerda y el punto de intersección es igual al producto de los segmentos formados por la otra cuerda y el punto de intersección.

PROBLEMAS RESUELTOS

Resolviendo la ecuación: Problema Nº 01 Desde un punto “P” exterior a una circunferencia se trazan la tangente PQ y la secante PRS, si el arco SR mide 140º y el ángulo QPS mide 50º. Calcule la medida del ángulo PSQ. RESOLUCIÓN Por ángulo semi-inscrito PQS PSQ = x Se traza la cuerda SQ Q P Reemplazando: R S 70º+x 50° 2X En el triángulo PQS: X + (X+70) + 50° = 180° X Resolviendo la ecuación: 140° X = 30°

Problema Nº 02 RESOLUCIÓN Desde un punto “P” exterior a una circunferencia se trazan la tangentes PQ y PR, luego en el mayor arco RQ se ubica un punto “S”, se traza RH perpendicular a la cuerda QS, si mHRS=20º; calcule la mQPR. RESOLUCIÓN En el triángulo rectángulo RHS m  S = 70º Por ángulo inscrito R Q Se sabe que: mQR = 140° H mQsR = 220° S 70° 140° X P 20° X = 40° Resolviendo:

Medida del ángulo interior Medida del ángulo exterior Problema Nº 03 Desde un punto “P” exterior a una circunferencia se trazan las secantes PBA y PCD tal que las cuerdas AC y BD sean perpendiculares entre sí; calcule la medida del ángulo APD, si el arco AD mide 130º. RESOLUCIÓN Medida del ángulo interior APD = x A C B D mBC = 50° Medida del ángulo exterior 130° 50° x P Resolviendo: X = 40°

Problema Nº 04 En una circunferencia, el diámetro AB se prolonga hasta un punto “P”, desde el cual se traza un rayo secante PMN tal que la longitud de PM sea igual al radio, si el arco NA mide 54º. Calcule la mAPN. RESOLUCIÓN Se traza el radio OM: APN = x M N Dato: OM(radio) = PM 54° Luego triángulo PMO es isósceles Ángulo central igual al arco o x x A B x P Medida del ángulo exterior Resolviendo: X = 18°

Problema Nº 05 En un triángulo ABC se inscribe una circunferencia tangente a los lados AB, BC y AC en los puntos “P”, “Q” y “R” respectivamente, si el ángulo ABC mide 70º. Calcule la mPRQ. RESOLUCIÓN Por la propiedad del ángulo exterior formado por dos tangentes: A B C  PRQ = x 70° 70° + mPQ = 180° mQP = 110° 110° P Q R Medida del ángulo inscrito: x Resolviendo: X = 55°

Problema Nº 06 A 70° X P B Resolución Calcule la medida del ángulo “X”. 70° B A X P Resolución

X = 40º RESOLUCIÓN A C 70° 220º 140º X P B mBA=140º 220º- 140º = x 2 Medida del ángulo inscrito: mBA=140º Por la propiedad del ángulo exterior formado por dos tangentes: 220º- 140º = x 2 X = 40º Resolviendo:

Problema Nº 07 Calcular la medida del ángulo “x” B A X P 130º Resolución

Por la propiedad del ángulo exterior formado por dos tangentes: B A X P 130º C RESOLUCIÓN 260º Medida del ángulo inscrito: mAB = 260º En la circunferencia: 260º + mACB = 360º mACB = 100º Por la propiedad del ángulo exterior formado por dos tangentes: mACB + x = 180º X = 80º

Problema Nº 08 2 B A C 5 Resolución Calcule el perímetro del triángulo ABC. 2 5 A B C Resolución

a b 2 (1) (2) RESOLUCIÓN B A C 5 (p) = 24 Teorema de Poncelet: a + b = 10 + 2(2) (1) a + b = 14 (2) Luego el perímetro: (p) = a + b + 10 = 14 + 10 (p) = 24 Reemplazando (1) en (2) (p) = 14 + 10

Problema Nº 09 Desde un punto “P” exterior a una circunferencia se trazan la tangente PQ y la secante PRS de modo que los arcos QS y SR sean congruentes. Si el arco RQ mide 80º, calcular mQPR . PLANTEAMIENTO Q a P 80º X R S Resolución

RESOLUCIÓN X Q R S 80º P a En la circunferencia: 2a + 80º = 360º a = 140º Medida del ángulo exterior: X = 30º

Problema Nº 10 En un cuadrilátero ABCD mQ = mS = 90º se traza la diagonal PR. Los inradios de los triángulos PQR y PRS miden 3cm y 2cm respectivamente. Si el perímetro del cuadrilátero PQRS es 22cm. Calcule la longitud de PR P Q R S PLANTEAMIENTO 3 2 Resolución

RESOLUCIÓN Dato: a a + b + c + d = 22cm b c d Teorema de Poncelet: Q R S 2 3 RESOLUCIÓN Dato: a + b + c + d = 22cm a b c d Teorema de Poncelet: PQR  a + b = PR+2(3) + PSR  c + d = PR+2(2) a +b + c + d = 2PR + 10 22 = 2PR + 10 PR = 6cm 12 = 2PR

Problema Nº 11 Primero: debemos encontrar el valor X. Como ya sabemos que los radios de una circunferencia son iguales formulamos la siguiente ecuación: 2X = 20, por lo tanto X = 10. Encuentra los valores de PA, PB y la medida del ángulo 1 Al saber que X = 10, determinamos que AP =30. Según la propiedad AP = BP, por lo tanto BP también vale 30, así obtenemos los valores de AP y BP . Segundo: Se quiere encontrar el valor del ángulo 1. Si observamos bien el arco AC es igual a 50°, por lo tanto el  AOP también es igual a50°. Y como OAP es igual a 90°, podemos formular la siguiente ecuación: 90° + 50° + APO = 180°, por lo tanto APO = 40° Según la propiedad OP es bisectriz, por el APO es igual al OPB, también vale 40°-

Problema Nº 12 Encuentra los valores de X e Y Primero. Se quiere encontrar el valor de X. Para lo cual debemos encontrar el valor Y. Como AP es igual a 40, podemos determinar y según la siguiente ecuación: 3Y + Y = 40, por lo tanto obtenemos que Y = 10. De esta manera sabemos los valores de AB = 30 y BP = 10 Segundo. Se quiere encontrar el valor de X. Según la propiedad AP • BP = DP • CP, por lo tanto, podemos plantear la siguiente ecuación: 40 • 10 = (X + 6) • 6, de esta manera obtenemos que X es igual a 60.6.