Todo material reaccionara de distinta manera al estar sometido a distintas cargas en su superficie, pudiendo presentar niveles de deformación y de esfuerzo.

Slides:



Advertisements
Presentaciones similares
PROPIEDADES ELÁSTICAS DE LOS MATERIALES
Advertisements

Deformaciones Cambio físico en los cuerpos debido a fuerzas
Ensayos mecánicos.
PROPIEDADES MECÁNICAS
PROPIEDADES MECÁNICAS DE LOS MATERIALES
INSTITUTO PROFESIONAL LOS LAGOS
INGENIERIA MECANICA.
TECNOLOGÍA Las Estructuras Índice Créditos.
Mecánica de Materiales
Unidad 5- Equilibrio estático y elasticidad
: AUTOR: TEMA II DEFORMACIÓN SIMPLE UNIVERSIDAD NACIONAL EXPERIMENTAL “FRANCISCO DE MIRANDA” ÁREA DE TECNOLOGÍA COMPLEJO ACADÉMICO EL SABINO. DPTO. DE.
TEMA 10 DINÁMICA DE FLUIDOS Indice 1.Dinámica de Fluidos en régimen de Bernouilli. 2.Ley de continuidad. 3.Teorema de Bernouilli. Presión Hidrodinámica.
Elasticidad Elasticidad Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University.
Torsión. 5.1 Deformación por torsión de un eje circular El par de torsión es un momento que tiende a torcer un elemento sobre su eje longitudinal. Su.
ENSAYO DE TRACCION. OBJETIVOS ing. metalurgica. Poma Leon, Antonio Joel
ESFUERZOS NORMAL Y CORTANTE
Heidis P. Cano Cuadro PhD
Capítulo 13 - Elasticidad Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University © 2007.
INICIACIÓN A LA CIENCIA DE LOS MATERIALES
PROCESO DE FORMADO DE METALES Proceso en caliente y frio.
ENSAYOS DESTRUCTIVOS ENSAYO DE TRACCIÓN.
NCh 430 Of 2008 Hormigón armado – Requisitos de diseño y cálculo
TEMA-16 MANIDESTACIONES DE LA DINÁMICA LITOSFÉRICA
Curso de Estabilidad IIb Ing. Gabriel Pujol
TEORÍA DE LA CONSOLIDACIÓN Puntos A y B    u o u    u o u e Inicial     u      u+u e ) Final   u AB.
Cinemática Dinámica Trabajo y Energía Sistemas de partículas
PROPIEDADES MECÁNICAS DE LOS MATERIALES Johana Martínez Correa Veronica Moreno Perea Sebastian Cortés Zapata.
TORSIÓN INTRODUCCIÓN La torsión aparece cuando: Cuando el plano de carga no pasa por el centro de corte de la sección Cuando se aplica un momento torsor.
Deformación elástica En esta presentación estudiaremos el tipo de deformación elástica de un material que es sometido a algún tipo de esfuerzo.
UNIVERSIDAD TECNOLOGICA DE LOS ANDES ESCUELA PROFESIONAL DE INGENIERIA CIVIL ASIGNATURA : física I TEMA : Resistencia de Materiales (tracción )
LA PLASTICIDAD.
Elasticidad y los Modelos Viscoelásticos
RESISTENCIA DE MATERIALES
C ANTIDAD DE MOVIMIENTO. La cantidad de movimiento (P) lineal de un cuerpo (ímpetu)se define como el producto de su masa por la velocidad.
TEMA II DEFORMACIÓN SIMPLE
PROPIEDADES MECÁNICAS DE LOS MATERIALES Son las características inherentes que permiten diferenciar un material de otros, desde el punto de vista del.
24/04/2018PROF. MOISES S. SANCHEZ ARTEAGA 1 FACULTAD DE INGENIERIA FISICA II SEMESTRE Prof. MOISES S. SANCHEZ ARTEAGA.
Diseño de miembros de Acero a Flexión y Corte Esfuerzos de flexión Teoría del análisis plástico Método del trabajo Virtual Localización de la articulación.
Ley de Hooke La forma más común de representar matemáticamente la Ley de Hooke es mediante la ecuación elasticidad, donde se relaciona F ejercida por el.
Diseño plástico ó de resistencia ultima. INTRODUCCION Las estructuras se han diseñado durante muchas décadas con el método elástico con resultados insatisfactorios.
C ANTIDAD DE MOVIMIENTO. La cantidad de movimiento (P) lineal de un cuerpo (ímpetu)se define como el producto de su masa por la velocidad.
Monocristal Es aquella en la que su estructura es continuo e ininterrumpido a los bordes de la muestra, sin límites de grano. Cuando los metales se solidifican.
Fuerza Elástica IE2 Explican los efectos de las fuerzas en resortes y elásticos. IE3 Aplican la ley de Hooke a situaciones cotidianas.
MOVIMIENTO ARMÓNICO SIMPLE
Tema 5 – Elasticidad Introducción Tensión y deformación.
SECUENCIA DE LA FUNCIÓN PORTANTE
Deformación.
Elasticidad Es una propiedad que tiene un objeto de recobrar su tamaño y forma original cuando la fuerza que lo deformó dejo de aplicarse. Esfuerzo (σ):
Proyecto de Física General II: Disipador Sísmico. Integrantes: Guillermo Daniel Molina Flores Lenin Moisés Valeriano
LEY GENERALIZADA DE HOOKE LEY DE HOOKE LEY GENERALIZADA DE HOOKE LEY DE HOOKE PARA ESFUERZOS TANGENCIALES.
GEOLOGIA DE MINAS ESTRUCTURAS GEOLOGICAS 2018 ING. WILBER PASTOR CONTRERAS.
Cantidad de movimiento
Fallas resultantes de carga estática Ing. Guido Torres Resistencia estática 5-2 Concentración del esfuerzo 5-3 Teorías de falla 5-4 Teoría del esfuerzo.
ALBEIRO CAÑAS RAMIREZ. ESTRUCTURAS Debido ala necesidad de protección que se genero en los grupos familiares de la época de los nómadas y buena parte.
Torsión. 5.1 Deformación por torsión de un eje circular El par de torsión es un momento que tiende a torcer un elemento sobre su eje longitudinal. Su.
TEMA: Conceptos de resistencia de materiales. DOCENTE: Ing. Maximo Huambachano Martel. ASIGNATURA: Resistencia de Materiales. ALUMNO : José paucar sarango.
Fac. de Ingeniería Univ. Nac. de La Pampa Gráficos tensión vs Deformación.
Ubicación de la estática y dinámica dentro de la mecánica.
Elasticidad Wilson E. CAMACHO M. Lic. Física Huaraz - PERU © 2018.
TENSIÓN COMPRESIÓN TORSIÓN FLEXIÓN COMPRESIÓN TENSIÓN MÁXIMA TIPOS DE CARGA A LOS QUE ES SOMETIDO UN EJE.
Diagrama Esfuerzo Deformación Área Académica: Licenciatura en Ingeniería Mecánica Profesor(a): Juan Carlos Fernández Ángeles Periodo: Enero- Julio 2015.
ESFUERZO Y DEFORMACION CARGA AXIAL. El esfuerzo se define aquí como la intensidad de las fuerzas componentes internas distribuidas que resisten un cambio.
UNIVERSIDAD DA VINCI DE GUATEMALA. PROFESORADO DE ENSEÑANZA MEDIA EN MATEMÁTICA Y FÍSICA. VI SEMESTRE. FÍSICA VI LIC. RAÚL RAMÍREZ MEDINA ESFUERZO TÉRMICO.
2 Profesor: Pedro L. Recuenco Andrés. Puntos básicos para una estructura ANTISÍSMICA ESTRUCTURA FLEXIBLE NUDOS ARTICULADOS AISLAMIENTO DE BASE DISEÑO.
INGENIERIA DE MATERIALES Ing. Alejandra Garza Vázquez.
Torsión. Deformaciones en un árbol circular Un momento de torsión o par torsor es aquel que tiende a hacer girar un miembro respecto a su eje longitudinal.
Introducción Procesos de Manufactura Por: Ing. Ricardo A. Forero R. INGNIERÍA CONCURRENTE Propiedades MecánicasPropiedades Mecánicas DimensionesDimensiones.
Comportamiento esfuerzo- deformación de la roca intacta.
ELASTICIDAD SEMANA 01 INGENIERIA INDUSTRIAL DOCENTE: ING. JOHN W. CHARCA CONDORI UNIVERSIDAD AUTONOMA SAN FRANCISCO.
Transcripción de la presentación:

Todo material reaccionara de distinta manera al estar sometido a distintas cargas en su superficie, pudiendo presentar niveles de deformación y de esfuerzo únicos, demostrando distintas reacciones tales como cambios en su tamaño, en su forma o tal vez el quiebre de la misma. por eso debido a las distintas cualidades de los materiales, estos podrán ser mas dúctiles, elásticos, resistentes y frágiles en comparación con otros materiales cuando se sometan a distintas cargas. A continuación se presentaran distintos términos asociados al estudio de las cualidades de los materiales cuando se les somete a esfuerzos y cargas axiales.

Se define como la fuerza por unidad de superficie que soporta o se aplica sobre un cuerpo, es decir es la relación entre la fuerza aplicada y la superficie donde se aplica. Una fuerza aplicada a un cuerpo no genera el mismo esfuerzo sobre cada una de las superficies del cuerpo, pues al variar la superficie, varia la relación fuerza / superficie, lo que comprende el esfuerzo

 Torsión: Las fuerzas de torsión son las que hacen que una pieza tienda a retorcerse sobre su eje central. Están sometidos a esfuerzos de torsión los ejes, las manivelas y los cigüeñales.

 Tracción: Hace que se separen entre sí las distintas partículas que componen una pieza, tendiendo a alargarla. Por ejemplo, cuando se cuelga de una cadena una lámpara, la cadena queda sometida a un esfuerzo de tracción, tendiendo a aumentar su longitud.

 Compresión: Hace que se aproximen las diferentes partículas de un material, tendiendo a producir acortamientos o aplastamientos. Cuando nos sentamos en una silla, sometemos a las patas a un esfuerzo de compresión, con lo que tiende a disminuir su altura.

 Flexión: Es una combinación de compresión y de tracción. Mientras que las fibras superiores de la pieza sometida a un esfuerzo de flexión se alargan, las inferiores se acortan, o viceversa. Al saltar en la tabla del trampolín de una piscina, la tabla se flexiona. También se flexiona un panel de una estantería cuando se carga de libros o la barra donde se cuelgan las perchas en los armarios.

La deformación se define como cualquier cambio en la posición o en las relaciones geométricas internas sufridas por un cuerpo siendo consecuencia de la aplicación de un campo de esfuerzos, por lo que se manifiesta como un cambo de forma, de posición, de volumen o de orientación. Puede tener todos estos componentes, cuando esto ocurre se dice que la deformación es total.

 Elástica: Este tipo de deformación es reversible. Una vez que ya no se aplican las fuerzas, el objeto vuelve a su forma original.

 Plástica: Este tipo de deformación es irreversible. Sin embargo, un objeto en el rango de deformación plástica primero se han sometido a deformación elástica, que es reversible, por lo que el objeto volverá forma parte a su forma original

 Fatiga: La fatiga de materiales se refiere a un fenómeno por el cual la rotura de los materiales bajo cargas dinámicas cíclicas se produce más fácilmente que con cargas estáticas.

 Fractura: Este tipo de deformación también es irreversible. Una ruptura se produce después de que el material ha alcanzado el extremo de la goma, de plástico y, a continuación, los rangos de deformación.

 La relación esfuerzo-deformación se puede tratar teóricamente con el uso de la primera ley de termodinámica, correspondiente a la ley de conservación de la energía. Debe notarse, que la cantidad total de energía en un sistema es generalmente indeterminado, por lo que sólo cambios en la energía interna son medibles. Estos cambios se determinan por la primera ley de la termodinámica. Si los efectos electromagnéticos se ignoran, esta ley se describe como: El trabajo realizado por un sistema mecánico por la acción de fuerzas externas y el calor que fluye dentro del sistema proveniente del exterior es igual al incremento de la energía interna más el incremento de energía cinética.

 La ley de elasticidad de Hooke o ley de Hooke, establece la relación entre el alargamiento o estiramiento longitudinal y la fuerza aplicada. La elasticidad es la propiedad física en la que los objetos con capaces de cambiar de forma cuando actúa una fuerza de deformación sobre un objeto.El objeto tiene la capacidad de regresar a su forma original cuando cesa la deformación. Depende del tipo de material. Los materiales pueden ser elásticos o inelásticos. Los materiales inelásticos no regresan a su forma natural.

 El diseño de elementos estructurales implica determinar la resistencia y rigidez del material estructural, estas propiedades se pueden relacionar si se evalúa una barra sometida a una fuerza axial para la cual se registra simultáneamente la fuerza aplicada y el alargamiento producido. Estos valores permiten determinar el esfuerzo y la deformación que al graficar originan el denominado diagrama de esfuerzo y deformación. Los diagramas son similares si se trata del mismo material y de manera general permite agrupar los materiales dentro de dos categorías con propiedades afines que se denominan materiales dúctiles y materiales frágiles. Los diagramas de materiales dúctiles se caracterizan por ser capaces de resistir grandes deformaciones antes de la rotura, mientras que los frágiles presentan un alargamiento bajo cuando llegan al punto de rotura.