Computacion Inteligente

Slides:



Advertisements
Presentaciones similares
La entrevista Mosaicos, pp. 325, 355. After her positive experience at the job fair, Malena has decided to go for an interview for a position in perfume.
Advertisements

The Present Tense of tener (to have)
Computacion Inteligente
Computacion Inteligente
Transformaciones que conservan ángulos
1 DEFINITION OF A CIRCLE and example CIRCLES PROBLEM 1a PROBLEM 2a Standard 4, 9, 17 PROBLEM 1b PROBLEM 2b PROBLEM 3 END SHOW PRESENTATION CREATED BY SIMON.
Computacion Inteligente
Computacion Inteligente
Question words question WORDS? Cómo Cuándo Cuánto Dónde Por qué Qué Cuál Quién A qué hora Adónde.
ADALINE — The Adaptive Linear Element
Computacion inteligente Introduccion a la Clasificacion.
Conjuntos fuzzy 1. 2  1965: Propuestos por Lotfi A. Zadeh, University of California, Berkeley  70’s primeras aplicaciones (Mamdani)  80’s aplicaciones.
Walnalo Walnalo We will now do the National Anthem but you’ll need to rise. We will now do the National Anthem but you’ll need to rise.
Fact Family4, 5, 20 (provided by the teacher) Problem4 X 5= 20 Perimeter = 18 cm Area4 x 5= 20 sq cm 5 cm 4 cm Example: Teachers: Assign students.
Making numbers Kaylor Productions. We begin by learning the root words 30 = treinta100 = cien 40 = cuarenta101 = ciento uno 50 = cincuenta113 =
First Grade – High Frequency Word Reading Competition Classroom Competition Created by: Malene Golding School Improvement Officer: Kimberly Fonteno.
CSE 504 Discrete Structures & Foundations of Computer Science
Second Grade – High Frequency Word Reading Competition Classroom Competition Created by: Malene Golding School Improvement Officer: Kimberly Fonteno.
First Grade – High Frequency Word Reading Competition Classroom Competition Created by: Malene Golding School Improvement Officer: Kimberly Fonteno.
La pregunta: Marquen los países con una flecha Saquen el paquete de los mapas.
Time Telling time is rather easy. You only need to know the numbers up to 59 to be able to tell the time.
Telling Time on the Hour If the hours are between 2 and 12, use “Son las …” Examples: 3:00 – Son las tres. 11:00 – Son las once. If the hour is within.
Me llamo ___________Clase 7IM La fecha es el 22 de septiembre del 2011 Propósito # 4: ¿Cómo continuamos el repaso de los verbos? Actividad Inicial:  Escribe.
Department of Modern Languages. Gramática nueva To HaveTo Have.
MY WAY Frank Sinatra MARILYNMONROEMARILYNMONROE Ligue o som.
Indirect Object Pronouns Original PowerPoint was by Ms. Martin of Tri-Center Community Schools.
Campanada guidelines in your composition notebook ¿Cómo es tu familia? (10 points) Ex. Hoy es Miercoles el 27 de enero First line will start with the date.
Escribir *You can get creative. You can write in the first person which means you are the character, you can use the third person which means you are talking.
TELLING TIME IN SPANISH. What time is it? To ask what time it is, say “¿Qué hora es?”
TAREA Para MAÑANA: 1. Drop the ending (-ar, -er, -ir) 2. Identify the subject 3. Extra Step 2.5: Change the stem 0. Decide if it’s a regular verb.
Linear Wire Antennas Infinitesimal Dipole From: Balanis, C. A. “Antenna Theory, Analysis and Design” Third Edition. A John Wiley & Sons, Inc.,Publication.
 In another countries show us that the Sci-Fi is too close to the reality, they make very impressive robots like animals and persons.  Then, if.
Scientific Method- Steps followed by scientists to find the answer to a scientific problem. Método Científico- pasos seguidos por los científicos para.
EQUILIBRIUM OF A PARTICLE IN 2-D Today’s Objectives: Students will be able to : a) Draw a free body diagram (FBD), and, b) Apply equations of equilibrium.
Física de Semiconductores
Optimización: Programación Lineal
Hoy es el _1 / 4____ de _marzo____ del __2013________
Ir practice activities
To be, or not to be? Let’s start out with one of the most important verbs in Spanish: ser, which means “to be.”
TELLING TIME IN SPANISH
Español 2 2 de mayo de 2017.
In Lección 1, you learned how to conjugate and use the verb ser (to be). You will now learn a second verb which means to be, the verb estar. Although.
El imperfecto Los verbos -AR Ch. 3 - Imperfect -AR Verbs.
Las Materias Vocabulary Practice
Ask students to move around the site and explore
First Grade Dual High Frequency Words
Tele clase 7 Cálculo de valores y vectores propios.
El presente en -AR Today you will learn:
Telling time to the minute, using “y” and “menos”.
Warm-up Fill in the blank with the correct form of the verb “ser” for each subject (p. 35): 1. Yo _______________ de Savannah. 2. Mis amigas ________.
Tele clase 14 Optimización multidimensional.
Interactive notebook page 32
Youden Analysis. Introduction to W. J. Youden Components of the Youden Graph Calculations Getting the “Circle” What to do with the results.
JUNIOR MOISES ARAUJO MARCACUZCO C. SEGÚN SU DIRECCION DE FLUJO Unsteady flow simulations of Pelton turbine at different rotational speeds Minsuk.
Los números.
Son las dos It is 2 A las 2 – at 2 Son las – it is 2
El subjuntivo en cláusulas adverbiales:
Conjugating Regular Imperfect Verbs:
El subjuntivo en cláusulas adverbiales:
How to Conjugate… SPANISH VERBS.
The Present Tense of tener (to have)
Introduction to CAN. What is CAN and what are some of its features? Serial communication Multi-Master Protocol Compact –Twisted Pair Bus line 1 Megabit.
VECTOR: Conjuction of 2 parameters: Module: Quantity, actual value, dimension Direction: “Where is it going to or coming from”
Antes de empezar contesta las preguntas sólo escribe las respuestas
¿Qué hora es?.
Welcome to PowerPoint gdskcgdskfcbskjc. Designer helps you get your point across PowerPoint Designer suggests professional designs for your presentation,
How to write my report. Checklist – what I need to include Cover page Contents page – with sections Introduction - aims of project - background information.
Astronomy has really big numbers. Distance between Earth and Sun meters kilometers This is the closest star.
Las Preguntas (the questions) Tengo una pregunta… Sí, Juan habla mucho con el profesor en clase. No, Juan no habla mucho en clase. s vo s vo Forming.
Transcripción de la presentación:

Computacion Inteligente Optimización basada en la derivada

Contenido El gradiente conjugado

EL GRADIENTE CONJUGADO

De ahora en adelante se asume que queremos minimizar la funcion cuadratica: A simetrica

El gradiente de la funcion esta dado por Si A simetrica

Encontrar el minimo de la funcion es equivalente a resolver el problema lineal: Si A simetrica

Ejemplo: Encontrar x tal que Ax = b. La solucion es la interseccion de las lineas

Cada elipsoide tiene f(x) constante En general, la solucion x está en el punto de interseccion de n hiperplanos, cada uno de dimension n – 1.

Cual es el problema con el steepest descent? Podemos repetir las mismas direcciones una y otra vez… ¿No sería mejor si cada vez que damos un paso, lo damos todo en esa direccion la primera vez?

Cual es el problema con el steepest descent? Podemos repetir las mismas direcciones una y otra vez… El gradiente conjugado requiere n evaluationes del gradiente y n busquedas lineales.

Primero, definamos el error como solucion ei es un vector que indica qué tan lejos estamos de la solucion. Start point

Tomemos un conjunto de direcciones de busqueda ortogonales (son una base en Rn) En cada direccion de busqueda, daremos exactamente un paso cada paso tendrá la longitud justa para llegar a

Por ejemplo, usando para dj los ejes de cordenadas como direcciones de busqueda… Desafortunadamente, este metodo solo funciona si ya conocemos la respuesta ortogonal

Tenemos

Una solucion: asumir Dado , cómo calcular ? 90º Como en el steepest descend Siendo asi, nunca sera necesario dar de nuevo un paso en la direccion de di

Una solucion: asumir Siendo asi, 90º Pero no hemos logrado nada porque no podemos calcular αi sin conocer ei. Pero si conocemos ei el problema ya estaba resuelto

Dado , cómo calcular ? Una solucion: asumir No sirve!

Dado , cómo calcular ? ASUMAMOS

Dado , cómo calcular ? HAGAMOS la derivada direccional CERO

Dado , cómo calcular ? Esto es Se puede calcular

Como hallar ? Ya que los vectores de busqueda forman una base Por otro lado

Queremos que despues de n pasos el error sea 0: Una idea: si entonces: Entonces si:

Asi, buscamos tal que Un calculo simple muestra que si tomamos La seleccion correcta es

Un algoritmo del gradiente conjugado: Step 4: and repeat n times Step 1: Data Step 0: Step 3: Step 2: The conjugate gradient method is a simple and effective modification of the optimum steepest descent method. For the optimum steepest descent method, the search directions for consecutive steps are always perpendicular to one another which slows down the process of optimization. The search directions for the conjugate direction method tend to cut diagonally through the orthogonal search directions from the optimum steepest descent method. This method begins by checking to see if the gradient at the starting point is close to zero. If it is, then we’re at the bottom of the hill and therefore done. If not, then the next point is found by optimizing along this search direction. Then the gradient and a quantity called beta is calculated at the new point. Beta is the ratio of the norms of the gradients. The new search direction is then calculated to as a compination of the gradient plus beta times the previous search direction. The gradient is checked to see if it is close to zero. Again, if it is, then the search is over. Then the optimum is found along this search direction resulting in the next point. We now return to step 4 and repeat the process until we reach the minimum of the objective function.

Sources J-Shing Roger Jang, Chuen-Tsai Sun and Eiji Mizutani, Slides for Ch. 5 of “Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence”, First Edition, Prentice Hall, 1997. Djamel Bouchaffra. Soft Computing. Course materials. Oakland University. Fall 2005 Lucidi delle lezioni, Soft Computing. Materiale Didattico. Dipartimento di Elettronica e Informazione. Politecnico di Milano. 2004 Jeen-Shing Wang, Course: Introduction to Neural Networks. Lecture notes. Department of Electrical Engineering. National Cheng Kung University. Fall, 2005

Sources Carlo Tomasi, Mathematical Methods for Robotics and Vision. Stanford University. Fall 2000 Petros Ioannou, Jing Sun, Robust Adaptive Control. Prentice-Hall, Inc, Upper Saddle River: NJ, 1996 Jonathan Richard Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Edition 11/4. School of Computer Science. Carnegie Mellon University. Pittsburgh. August 4, 1994 Gordon C. Everstine, Selected Topics in Linear Algebra. The GeorgeWashington University. 8 June 2004