Funciones.

Slides:



Advertisements
Presentaciones similares
Funciones En nuestra vida cotidiana tenemos experiencia con relación o correspondencias de magnitudes . Ejemplos : En un almacén , a cada producto le corresponde.
Advertisements

QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS
FUNCION LINEAL Una función lineal f tiene por criterio la ecuación f(x)=mx+b, donde m y b son constantes reales. F(X) =es función lineal Y= ecuación lineal.
RELACIONES Y FUNCIONES
Funciones Melany Cerda.
FUNCIONES DE VARIABLE REAL
Funciones.
Funciones 1. Función 2. Características de las funciones
Funciones Psu Matemáticas 2012.
Formas de representación
Funciones.
Logaritmos III Función Exponencial y Función Logarítmica.
FUNCION LINEAL.
Función Exponencial Se conoce como función exponencial a la función f de variable real cuya regla de correspondencia es: Si a > 0; a ≠ 1; x € IR.
QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS
F UNCIONES LICEO VILLA MACUL ACADEMIA DEPTO. DE MATEMÁTICA 4° MEDIO COMÚN PROF. LUCY VERA.
Función exponencial y Función logarítmica. 1. Función Exponencial Es de la forma: f(x) = a x con a >0, a ≠ 1 y x Є IR 1.1 Definición Ejemplo1: f(x) =
INICIOESQUEMA INTERNETACTIVIDAD MATEMÁTICAS 1º Bach. CT Unidad 7: Funciones ANTERIOR SALIR 7 Funciones INTERNET LECTURA INICIAL ESQUEMA Las funciones no.
PPTCEG035EM31-A16V1 Función afín y función lineal. EM-31.
ESCUELA: NOMBRES: ÁLGEBRA FECHA: Ciencias de la Computación Ing. Ricardo Blacio ABRIL /AGOSTO
ESCUELA: NOMBRES: ÁLGEBRA FECHA: Ciencias de la Computación Ing. Ricardo Blacio OCTUBRE 2009 – FEBRERO
Funciones ¿Qué es una función? Formas de representación Propiedades Clasificación Tipos Generalidades.
Materia: Pensamiento Algébrico Profesora: Gabriela Aidee Cadena Lara Grado y Grupo: 1°”7” Integrantes: Raúl Alejandro Pérez Reyes Mónica Itzel Reyes Morales.
Tipos de funciones Marcela mayen#14 4b.
Funciones y gráficas ITZEL ALEJANDRA LOZOYARODRIGUEZ
ALUMNO: ARELY GUTIERREZ LOZOYA
Funciones y gráficas Daniel Ordoñez Aguirre Licenciatura EN DERECHO
Sistema tridimensional
SesiónContenidos: 10 ↘Función cuadrática. > Elementos de la función cuadrática. ↘Gráfico de funciones cuadráticas en el plano cartesiano. Profesor: Víctor.
San Pedro Sac. San Marcos Guatemala.
FUNCIONES, PROCESAMIENTO ELEMENTAL DE DATOS
Funciones.
Geometría Analítica Rectas y cónicas..
MATEMÁTICAS 1 TAREA 2 MIGUEL ÁNGEL RODRÍGUEZ GUTIÉRREZ.
NOMBRE DEL ALUMNO: Mariana Quiñones Armendáriz
Inecuaciones José Otero Bargos.
ALUMNO: OMAR DAVID MOLINA GARCIA
ALUMNO:MANUEL ANTONIO GIL CHAVEZ
NOCIONES ELEMENTALES DE LOGICA Y TERIA DE CONJUNTOS
Tarea II Matemáticas Francisco Raul Gandara Villaverde
Desigualdades.
SANCHEZ RODRIGUEZ CARLOS ALEJANDRO
Funciones Potencias, exponenciales y logarítmicas.
Familia de las funciones
Alumno: francisco Ismael huerta moreno
Fundamentos para el Cálculo
Intervalos y Desigualdades
FUNCION LINEAL Y ECUACION DE 1ª GRADO
Adriana Fernández 4to bach d #5
3° MEDIO – Matemática Común
FUNCIONES LINEALES Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya.
APLICACIONES DE LAS FUNCIONES
FUNCIONES ELEMENTALES
Relaciones dadas por tablas
TASA DE VARIACIÓN Dada una función cualquiera f(x), se define su tasa de variación media en un intervalo [a, b], como: TVM[a, b] = var i ac ón de f ( x.
Diferentes tipos de funciones
UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS
Ecuación de la recta. Elementos de ecuación de la recta En una ecuación dela recta de tipo y=mx+c se analizan los siguientes elementos: m es la pendiente.
MATEMÁTICA Clase Funciones: exponencial, logarítmica y raíz cuadrada
I A° 2017 Función exponencial y logarítmica.
FUNCIONES, MATRICES Y DETERMINANTES
Tema 5. Funciones reales de variable real
FUNCIONES ELEMENTALES.
Clase Función cuadrática cuadrática. Función cuadrática Definición Es de la forma: f(x) = ax 2 + bx + c Ejemplos: y su representación gráfica corresponde.
Funciones. Objetivos:  Identifican las variables que están involucradas en funciones que modelan situaciones de la vida cotidiana.  Identificar y evaluar.
Euler - Matemáticas I Tema: 14 1 Funciones elementales Final Funciones lineales Las funciones de la forma y = ax + b, donde a, b  R se llaman funciones.
ANÁLISIS 2º Bachillerato.
Funciones Potencia y Exponencial Objetivos de la clase: Identifican la función potencia y exponencial, construyen el gráfico de ambas.
2° Medio Unidad: Función cuadrática y Ecuación de segundo grado.
Transcripción de la presentación:

Funciones

Función Conceptos: Dominio: es el conjunto de todos los valores para los cuales está definida la función y se denota Dom f. Recorrido: es el conjunto de todos los valores que toma la variable independiente (Y), y se denota Rec f. Función Creciente: es aquella que al aumentar la variable independiente, también aumenta la variable dependiente. Función Decreciente: es aquella que al aumentar la variable independiente, la variable dependiente disminuye. Función Constante: es aquella que para todos los valores de la variable independiente, la variable dependiente toma un único valor

Función Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión.

Función Función Discontinua: Es aquella que no es continua, es decir, presenta separaciones y/o saltos en su gráfica.

Función Función Periódica: Es aquella en la que su gráfica se repite cada cierto intervalo, llamado período.

I. Función Lineal Es de la forma f(x) = mx + b con m : Pendiente b : Ordenada del punto de intersección entre la recta y el eje Y (coeficiente de posición). Ejemplo: La función f(x) = 5x – 3, tiene pendiente 5 e intersecta al eje Y en la ordenada -3.

I. Función Lineal Análisis de la Pendiente Para saber con qué tipo de función se está trabajando, se debe analizar el signo de la pendiente. Si m < 0, entonces la función es decreciente. Si m = 0, entonces la función es constante. Si m > 0, entonces la función es creciente.

I. Función Lineal I) X Y b m > 0 b > 0 m < 0 b < 0 II) III) IV)

I. Función Lineal Tipos de funciones especiales: a) La función de forma f(x) = x, se reconoce como función identidad y su gráfica es: 1 2 f(x) x -1

I. Función Lineal Tipos de funciones especiales: b) La función de la forma f(x) = c, con c: Constante Real, se conoce como función constante y su gráfica es: f(x) x ● c f(x) x ● c con c > 0 con c < 0

I. Función lineal Propiedades: El dominio de la función lineal son todos los números IR. Las rectas que tienen la misma m serán paralelas. Las rectas que al multiplicar sus pendientes el producto es -1 serán perpendiculares.

I. Función Lineal Evaluación de una función lineal: Dada la función f(x) = mx + b, si se busca el valor de la función para un valor cualquiera de x, basta reemplazar dicho valor, así como también si se busca el valor de x conociendo el valor de la función. Ejemplo La función que representa el valor a pagar en un taxi, después de recorridos 200m es: f(x) = 0.8x + 250 con x: cantidad de metros recorridos f(x): costo en pesos 3 km = 3000 m Entonces, el valor a pagar por un recorrido de 3 kilómetros es: f(3000) = 0.8 · 3000 + 250 = 2650 Por 3 kilómetros se pagan $2650.

I. Función Lineal Si queremos saber cuántos metros recorrió una persona si pagó $2.250, se debe resolver la siguiente ecuación: 2250 = 0.8x + 250 / -250 2000 = 0.8x / :0.8 2500 = x Una persona que paga $2250. recorrió 2500 metros o 2.5 kilómetros.

II. Función Cuadrática Naturaleza de las raíces de una ecuación de 2º grado Si f(x) = 0, tendremos que ax² + bx + c = 0, llamada Ecuación de 2º grado en su forma general. Toda ecuación de 2º grado posee dos soluciones, pudiendo ser reales o imaginarias, las que vienen dadas por la expresión: x = -b ±√b²- 4ac 2a 1 x = -b ±√b²- 4ac 2a x = -b ±√b²- 4ac 2a 2 Estas soluciones, raíces o ceros de la ecuación corresponden gráficamente a los puntos donde la función f(x) = ax² + bx + c corta al eje X. Estos puntos tienen como coordenadas (x ,0) y (x , 0) 1 2

II. Función Cuadrática Tipos de soluciones Dependen del valor del Discriminante Si D = 0, 2 soluciones reales iguales Si D > 0, 2 soluciones reales distintas (x y x € C, con x ≠ x ) Si D < 0, 2 soluciones imaginarias distintas (x y x € C, con x ≠ x ) D = b² - 4ac (x = y) 1 1 2 1 2 1 2 1 2

II. Función Cuadrática Ejemplo: Sea la ecuación de 2º grado: x² + 2x – 15 = 0. ¿Cuáles son las soluciones de esta ecuación? Sabemos que las soluciones de una ecuación de 2º grado vienen dadas por En este caso a = 1 b = 2 c = -15 Luego, x = 3 x = -5 x = -b ±√b²- 4ac 2a x = -2 ±√2²- 4·1·(-15) 2·1 x = -2 ±√4- 60 2 x = -2 ±√64 2 x = -2 ±8 2 x = -2 + 8 2 1 x = -2 - 8 2 1 2

III. Función Parte Entera Su valor, para cada número x € IR, es la parte entera de x y se designa por [x]. Ésta se escribe: Dado un número real x, la función parte entera le asigna el mayor entero que es menor o igual a x, es decir: Ejemplos: [2,9] = 2 ;[-7/2] = -4 ;[5] = 5 ;[√2] = 1 f(x) = [x] [x] ≤ x < [x+1] Todo número real está comprendido entre dos números enteros, la parte entera de un número es el menor de los números enteros entre los que está comprendido.

III. Función Parte Entera Obsérvese que esta función es constante en los intervalos semiabiertos (semicerrados) de la forma [n, n + 1[ con n € Z. Por tanto, los segmentos horizontales contienen sus extremos izquierdos, pero no los derechos

IV. Función Valor Absoluto El valor absoluto de un número x € IR, denotado por |x|, es siempre un número real no negativo que se define: Ejemplo: |-3| = 3 |12| = 12 |-18| = 18 |-5,3| = 5,3 x si x ≥ 0 f(x) = |x| = -x si x < 0 Si los números reales están representados geométricamente en el eje real, el número |x| se llama distancia de x al origen.

IV. Función Valor Absoluto a indica el punto de traslación en el eje de las coordenadas.

IV. Función Valor Absoluto b indica el punto de traslación en el eje de las abscisas.

IV. Función Valor Absoluto Propiedades: a. Si |x| ≤ a entonces -a ≤ x a; con a ≥ 0 b. Si |x| ≥ a entonces x ≥ a ó -x ≥ a c. |xy| = |x| · |y| d. |x + y| ≤ |x| + |y| (Desigualdad Triangular)

IV. Función Valor Absoluto La última propiedad se llama desigualdad triangular, pues, cuando, se generaliza a vectores indica que la longitud de cada lado de un triangulo es menor o igual a la suma de las longitudes de los otros dos.

IV. Función Valor Absoluto Ejercicios: Determinar el intervalo solución de las siguiente inecuación: a. |x – 3| ≤ 2 Aplicando la primera propiedad: -2 ≤ x – 3 ≤ 2 -2 + 3 ≤ x ≤ 2 + 3 1 ≤ x ≤ 5 x € [1, 5]

IV. Función Valor Absoluto La Respuesta correcta es B

IV. Función Valor Absoluto La Respuesta correcta es D

V. Función Exponencial Es la función inversa del logaritmo natural y se denota equivalentemente como: x e^x o x exp(x) La función exponencial f con base a se define como f(x) = a Si a > 0 ^ a ≠ 1, x € IR x

V. Función Exponencial Propiedades: El dominio de la función exponencial está dado por los números IR. El recorrido de la función exponencial está dado por los IR*. El punto de intersección de la función con el eje Y es (0, 1). La función no intercepta el eje X.

V. Función Exponencial Crecimiento y decrecimiento exponencial: Si a > 1, f(x) es creciente en todo IR. Mientras más grande el número de la base, la línea estará más cerca del eje Y.

V. Función Exponencial Crecimiento y decrecimiento exponencial: Si 0 < a < 1, f(x) es decreciente en IR

V. Función Exponencial Ejercicio: Determinar la función que representa en número de bacterias que hay en una población después de x horas si se sabe que inicialmente había 10.000 bacterias y que la población se triplica cada una hora. Solución: Cantidad inicial = 10.000 Después de una hora = 10.000 · 3 = 30.000 Después de dos horas = 10.000 · 3 · 3 = 90.000 … Después de x horas = 10.000· 3 Por lo tanto, siendo x el número de horas que pasan desde el inicio del estudio, la cantidad de bacterias se representa por la función: f(x) = 10.000 · 3 x x

V. Función Logarítmica La inversa de una función exponencial de base a se llama función logarítmica de base a y se representa por log . Está dada por la siguiente ecuación: a y = log x si x = a y a

V. Función Logarítmica Propiedades El dominio de la función logarítmica está dado por los números IR, la función no está definida para x ≤ 0. El punto de intersección de la función con el eje X es (1, 0). La función no intercepta el eje Y.

V. Función Logarítmica Crecimiento y decrecimiento Logarítmico: Si a > 1, f(x) = log x es creciente para x > 0. a

V. Función Logarítmica Crecimiento y decrecimiento Logarítmico: Si 0 < a < 1, f(x) = log x es decreciente para x > 0. a

V. Función Logarítmica Ejercicios: Dado los valores: log 2 = 0.3010 y log 3 = 0.4771. Entonces, en la función f(x) = log x, determine f(6). Solución: f(6) = log (6) Donde log 6 = log (2 · 3) Por Propiedad log (2 · 3) = log 2 + log 3 = 0.3010 + 0.4771 = 0.7781 Por lo tanto: Si f(x) = log x, entonces f(6) = 0.7781

V. Función Logarítmica La Respuesta correcta es D