La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

CURSO AVALIAÇÃO DE GRANDES PROJETOS PÚBLICOS BRASILIA BRASIL CLAUDIA NERINA BOTTEON Mayo - 2006.

Presentaciones similares


Presentación del tema: "CURSO AVALIAÇÃO DE GRANDES PROJETOS PÚBLICOS BRASILIA BRASIL CLAUDIA NERINA BOTTEON Mayo - 2006."— Transcripción de la presentación:

1 CURSO AVALIAÇÃO DE GRANDES PROJETOS PÚBLICOS BRASILIA BRASIL CLAUDIA NERINA BOTTEON Mayo

2 I- RIESGO EN EVALUACIÓN DE PROYECTOS

3 ¿Qué es el riesgo desde el punto de vista de un proyecto? Es la variabilidad de su rentabilidad (VAN, TIR, etc..) A mayor variabilidad mayor riesgo ¿Cómo puede medirse? MÉTODOS QUE PERMITEN EXPLICITAR EL RIESGO NO LO ELIMINAN

4 II- EVALUACIÓN DETERMINISTICA

5 ¿En qué consiste la evaluación determinística? Considera: EL VALOR ESPERADO DE CADA VARIABLE ¿Qué resulta de esta evaluación? Los INDICADORES DE RENTABILIDAD son VALORES ESPERADOS Ej: precio social del bien X está entre $ 40 y $ 50, pero su valor más probable es $ 46. En la evaluación social se considera $ 46

6 Ejemplo sencillo Flujo de beneficios y costos sociales VAN esperado del proyecto = $ 8.750,30

7 III- MÉTODOS QUE NO CONSIDERAN LA PROBABILIDAD DE OCURRENCIA

8 Determinación de las variables críticas Punto de nivelación Análisis de sensibilidad Análisis de escenarios ¿Cuáles son los métodos que no consideran la probabilidad de ocurrencia más usados? Complementarios entre sí

9 Para cada una de las variables que inciden en el VAN se estima: La elasticidad del VAN respecto de cada variable. La variabilidad de esa variable. El indicador de variable crítica. Determinación de las variables críticas

10 La elasticidad del VAN respecto de la variable Y Determinación de las variables críticas La elasticidad del VAN respecto de cada variable. La variabilidad de esa variable. El indicador de variable crítica.

11 Ejemplo: La elasticidad del VAN respecto de la inversión inicial Inversión considerada en evaluación = $ VAN* = $ 8.750,30 Si ocurriera un aumento del 10% de la inversión Inversión aumenta a = $ Nuevo VAN* = $ 3.898,45 Determinación de las variables críticas

12 Variabilidad de la variable Y Determinación de las variables críticas Rango de variación de la variable o recorrido, en términos porcentuales: Ejemplo, si el precio social esperado de Y es $ 100 y puede variar entre $ 90 y $ 110, entonces, el precio es $ 100 más o menos 10%, es decir que el rango de variación es del 10% del valor medio. Distribución de la variable es uniforme ): La elasticidad del VAN respecto de cada variable. La variabilidad de esa variable. El indicador de variable crítica.

13 Variabilidad de la variable Y Determinación de las variables críticas El coeficiente de variación (CV), definido como la desviación estándar ( ) sobre la media (Y): ): Yi son los valores que puede asumir la variable Y Ai es la probabilidad de ocurrencia correspondiente al valor Yi La elasticidad del VAN respecto de cada variable. La variabilidad de esa variable. El indicador de variable crítica.

14 Determinación de las variables críticas ): El coeficiente de variación Distribución normal el 68,27% de los casos cae dentro del intervalo: Media ±. Si por ejemplo el CV = 0,3, el 68,27% de los casos estará en el intervalo Media ± 30%. Variabilidad de la variable Y La elasticidad del VAN respecto de cada variable. La variabilidad de esa variable. El indicador de variable crítica.

15 Determinación de las variables críticas Indicador de variable crítica = Elasticidad * Rango Interpretación con respecto a X: La variación del VAN debido a variaciones en cantidades será del 147,26% en más o en menos en el 68,27% de los casos. La elasticidad del VAN respecto de cada variable. La variabilidad de esa variable. El indicador de variable crítica.

16 Determinación de las variables críticas Indicador de variable crítica (utilizando el Coeficiente de Variación) Hay que conocer: la distribución de probabilidades de la variable o los parámetros que definen la distribución. La elasticidad del VAN respecto de cada variable. La variabilidad de esa variable. El indicador de variable crítica.

17 Determinación de las variables críticas Indicador de variable crítica (utilizando el Coeficiente de Variación) La elasticidad del VAN respecto de cada variable. La variabilidad de esa variable. El indicador de variable crítica.

18 Determinación de las variables críticas Indicador de variable crítica (utilizando el Coeficiente de Variación) Interpretación: La variación del VAN debido a variaciones en cantidades será del 59,75% en más o en menos en el 68,27% de los casos. La elasticidad del VAN respecto de cada variable. La variabilidad de esa variable. El indicador de variable crítica.

19 Para cada una de las variables se puede determinar su: Valor mínimo (en caso que incidan en forma positiva). Valor máximo (en caso que incidan en forma negativa). Punto de nivelación de una variable

20 VAN* = 0 Precio mínimo = $ 5,59 Cantidad mínima = 8.083

21 Punto de nivelación de una variable Combinaciones de precios y cantidad

22 Análisis de sensibilidad Efectos que producen sobre el VAN las variaciones en los valores de las variables PARA UNA VARIABLE

23 Análisis de sensibilidad PARA DOS VARIABLES Sensibilidad del VAN a la cantidad y al precio

24 Análisis de escenarios CONJUNTO DE SITUACIONES POSIBLES Combinan en forma coherente las variables más críticas

25 Análisis de escenarios Escenario Optimista Escenario Pesimista Escenario Original (Promedio)

26 III- MÉTODOS QUE CONSIDERAN LA PROBABILIDAD DE OCURRENCIA

27 Método de simulación con el Modelo MONTECARLO ¿Cuál es el método que considera la probabilidad de ocurrencia más usado? Requiere de los resultados de los métodos que no consideran la probabilidad

28 UNA DISTRIBUCIÓN DE PROBABILIDADES DEL VAN VAN Esperado Desviación estándar Coeficiente de variación Tabla de frecuencias Histograma Cantidad de VAN superiores e inferiores a determinado valor ¿Qué permite lograr su aplicación? Modelo MONTECARLO

29 Pasos a seguir: Definir variable dependiente: VAN. Identificar variables independientes: precio social del bien, etc. Clasificar las variables en ciertas y aleatorias. Identificar la distribución de probabilidades de los valores de cada variable: normal, uniforme, triangular, etc. (en base a la información disponible y/o a la experiencia). Generar k números aleatorios para cada una de las variables aleatorias a partir de su respectiva distribución de probabilidades. Calcular el conjunto de VAN

30 Modelo MONTECARLO Una variable aleatoria: cantidad anual vendida Distribución normal con los mismos parámetros utilizados en la determinación de variables críticas: Se generaron 300 números aleatorios. Se presentan los primeros 8 valores obtenidos.

31 Modelo MONTECARLO

32 Dos variables aleatorias: cantidad y precio social Distribución normal: Se generaron 300 números aleatorios. Se presentan los primeros 8 valores obtenidos.

33 Modelo MONTECARLO


Descargar ppt "CURSO AVALIAÇÃO DE GRANDES PROJETOS PÚBLICOS BRASILIA BRASIL CLAUDIA NERINA BOTTEON Mayo - 2006."

Presentaciones similares


Anuncios Google