La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

DISEÑO DE EXPERIMENTOS Ing. Felipe Llaugel EXPERIMENTOS DE COMPARACIÓN SIMPLE.

Presentaciones similares


Presentación del tema: "DISEÑO DE EXPERIMENTOS Ing. Felipe Llaugel EXPERIMENTOS DE COMPARACIÓN SIMPLE."— Transcripción de la presentación:

1 DISEÑO DE EXPERIMENTOS Ing. Felipe Llaugel EXPERIMENTOS DE COMPARACIÓN SIMPLE

2 Ing. Felipe Llaugel Estos son los tipos de experimentos mas sencillos. Consiste en determinar si existe diferencia estadísticamente significativa entre dos tratamientos. El problema se presenta porque hay efectos aleatorios en todo proceso productivo que hacen que los resultados del experimento no siempre sean iguales. Las pruebas estadísticas realizadas en este tipo de experimento aseguran si la diferencia, si existe, es significativa. EXPERIMENTOS DE COMPARACIÓN SIMPLE

3 Ing. Felipe Llaugel Para entender en qué consiste el concepto de variabilidad hay que tener bien claro que no todos los productos que salen de un proceso son iguales y que siempre es de esperarse cierta variación entre ellos. EL CONCEPTO DE VARIABILIDAD

4 Ing. Felipe Llaugel EL CONCEPTO DE VARIABILIDAD La variación inherente a todo proceso de producción es lo que se ha llamado variabilidad, y la misma podrá ser reducida a un mínimo, pero nunca eliminada. Es por esto que es necesario valerse de ciertas herramientas de análisis para poder entender y controlar la variabilidad. Es necesario valerse de ciertas herramientas de análisis para poder entender y controlar la variabilidad.

5 Ing. Felipe Llaugel EL CONCEPTO DE VARIABILIDAD La mejor herramienta disponible es la estadística que según Douglas Montgomery, en su libro "Introducción to Statistical Quality Control", la define como: "Estadística es el arte de tomar decisiones sobre la población de un proceso basado en el análisis de la información contenida en una muestra extraída de dicha población".

6 Ing. Felipe Llaugel La estructura probabilistica de una variable aleatoria, digamos y, se describe por su distribución de probabilidad. Si y es discreta, decimos que su distribución de probabilidad es p(y), o sea, la función de probabilidad de y. Si y es continua, su función de probabilidad p(y), se llama densidad de probabilidad de y. Matemáticamente se pueden expresar ambos conceptos de la siguiente manera: DISTRIBUCIONES PROBABILISTICAS

7 Ing. Felipe Llaugel para y discreta: DISTRIBUCIONES PROBABILISTICAS 0 p(y j ) 1 para todo y j P(y = y j ) = p(y j ) para todo y j para y continua: 0 f(y) P(a y b) =

8 Ing. Felipe Llaugel DISTRIBUCIONES PROBABILISTICAS Determinar el tipo de variable con la que se esta experimentando es importante para saber que método de análisis utilizar con los datos del experimento. Saber el tipo de distribución de probabilidad de la variable de análisis podrá también permitir la simplificación del análisis de los datos experimentales.

9 Ing. Felipe Llaugel REPRESENTACION GRAFICA DE DISTRIBUCIONES DE PROBABILIDAD Variable discreta Distribución de probabilidad de y

10 Ing. Felipe Llaugel REPRESENTACION GRAFICA DE DISTRIBUCIONES DE PROBABILIDAD Variable continua Función de Densidad de Probabilidad P(a y b)

11 Ing. Felipe Llaugel ALGUNOS CONCEPTOS DE ESTADISTICA DESCRIPTIVA Esta es la estadística que sirve para dar luz sobre las características mas relevantes de una variable aleatoria en función de informaciones extraídas de una muestra de la misma. Los principales parámetros estadísticos para una variable aleatoria y, podemos dividirlos en los siguientes:

12 Ing. Felipe Llaugel ALGUNOS CONCEPTOS DE ESTADISTICA DESCRIPTIVA Medidas de Tendencia Central Medidas de Dispersión Media aritmética Mediana Moda Media Geométrica Varianza muestral Desviación Estándar Rango Curtosis Sesgo

13 Ing. Felipe Llaugel RESISTENCIA A PRESIÓN DE TANQUES DE GAS EN Kg./Pulg 2 EJEMPLO: SON IGUALES LOS TRATAMIENTOS?

14 Ing. Felipe Llaugel PRUEBA DE HIPOTESIS PARA DIFERENCIA DE MEDIAS Esta es una prueba estadística sencilla para determinar si hay o no diferencia significativa entre los promedios de dos muestras. Usando los datos de resistencia a la presión para los dos tratamientos usados en la fabricación de tanques de gas mostrados anteriormente, lo que se plantea es la hipótesis de que ambos tratamientos producen tanques de igual resistencia, y se desea probar que no hay evidencia estadística para decir lo contrario.

15 Ing. Felipe Llaugel PRUEBA DE HIPOTESIS PARA DIFERENCIA DE MEDIAS En una prueba de hipótesis estadística se contrasta una hipótesis inicial, a la que llamaremos H 0, o hipótesis nula, contra una hipótesis alternativa H 1. Para este ejemplo H 0 : H 1 : Donde Kg./Pulg 2, resistencia media muestral de tratamiento A Kg./Pulg 2, resistencia media muestral de tratamiento B.

16 Ing. Felipe Llaugel Dos tipos de errores podrían presentarse en nuestro análisis: Error Tipo I : Rechazar H 0 siendo esta verdadera Error Tipo II: Aceptar H 0 siendo esta falsa. El experimentador debe tomar una decisión con un margen de error determinado. Al margen de error que asume el experimentador de rechazar H 0 siendo esta verdadera, se le llama nivel de significación. Para este ejemplo asumamos a = Esto indica que la probabilidad de rechazar la hipótesis de que los dos tratamientos son iguales siendo esto falso es de 5%. PRUEBA DE HIPOTESIS PARA DIFERENCIA DE MEDIAS

17 Ing. Felipe Llaugel PRUEBA DE HIPOTESIS PARA DIFERENCIA DE MEDIAS Asumiendo que las varianzas de ambos tratamientos son iguales, una prueba estadística apropiada es el uso del estadístico t 0. Este estadístico se calcula con la formula: Donde:

18 Ing. Felipe Llaugel PRUEBA DE HIPOTESIS PARA DIFERENCIA DE MEDIAS Grados de Libertad: Es el numero de parámetros que son independientes para el calculo del estadístico. Para esta prueba tenemos n 1 + n 2 -2 grados de libertad. Entonces:

19 Ing. Felipe Llaugel Este es el valor calculado de t 0 el cual debe compararse con el valor teórico de t /2,28, que es igual a Este ultimo numero sale de la tabla de la distribución t. En la siguiente pagina podemos ver una muestra de esta tabla. La prueba nos dice que si t 0 es menor que t /2,28, entonces se acepta la hipótesis nula, lo que indica que no hay evidencia estadística para decir que ambos tratamientos producen tanques de gas con diferente resistencia a la presión. PRUEBA DE HIPOTESIS PARA DIFERENCIA DE MEDIAS

20 PUNTOS PORCENTUALES DE LA DISTRIBUCIÓN t Ing. Felipe Llaugel

21 Ejercicio con MINITAB (1 de 3)

22 Ejercicio con MINITAB (2 de 3)

23 Ejercicio con MINITAB (3 de 3) 20% examen parcial al que diga por qué

24 Ejemplo 2.1con MINITAB (1 de 5)

25 Ejemplo 2.1con MINITAB (2 de 5)

26 Ejemplo 2.1con MINITAB (3 de 5)

27 Ejemplo 2.1con MINITAB (4 de 5)

28 Ejemplo 2.1con MINITAB (5 de 5)

29 Ing. Felipe Llaugel INTERVALOS DE CONFIANZA Aunque la prueba de hipótesis es un procedimiento útil, algunas veces no nos da toda la información importante. Es entonces, preferible obtener un intervalo dentro del cual el valor del o los parámetros de estudio puedan esperarse. A ese intervalo se le llama Intervalo de Confianza. Se puede expresar matemáticamente diciendo que P(L U) = 1 -. Aunque la prueba de hipótesis es un procedimiento útil, algunas veces no nos da toda la información importante. Es entonces, preferible obtener un intervalo dentro del cual el valor del o los parámetros de estudio puedan esperarse. A ese intervalo se le llama Intervalo de Confianza. Se puede expresar matemáticamente diciendo que P(L U) = 1 -.

30 Ing. Felipe Llaugel INTERVALOS DE CONFIANZA Donde es el parámetro estadístico a estimar. Para el ejemplo anterior, en caso de no haber sido iguales el efecto de ambos tratamientos en la resistencia a la presión de los tanques de gas, nos hubiera sido útil saber cual es el intervalo en que puede encontrarse la diferencia entre ambos procesos. La formula para calcular este intervalo de confianza para la diferencia de los valores promedios de ambos procesos seria:

31 Ing. Felipe Llaugel Usando los mismos datos tenemos: *39.35* *39.35*0.365 o sea INTERVALOS DE CONFIANZA

32 Se usan para conseguir un mejoramiento significativo de la precisión haciendo comparaciones de observaciones pareadas del material experimental. El modelo estadístico es: Ing. Felipe Llaugel Comparaciones pareadas

33 Ing. Felipe Llaugel Comparaciones pareadas Prueba de Hipótesis: El estadístico de prueba es: donde: y Se rechaza H 0 si

34 Ejemplo con MINITAB (1 de 3) 20% examen parcial al que diga por qué

35 Ejemplo con MINITAB (2 de 3) 20% examen parcial al que diga por qué

36 Ejemplo con MINITAB (3 de 3)


Descargar ppt "DISEÑO DE EXPERIMENTOS Ing. Felipe Llaugel EXPERIMENTOS DE COMPARACIÓN SIMPLE."

Presentaciones similares


Anuncios Google