La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Preparado por: Prof. Roberto O. Rivera Rodríguez 1 Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neumann Gandía.

Presentaciones similares


Presentación del tema: "Preparado por: Prof. Roberto O. Rivera Rodríguez 1 Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neumann Gandía."— Transcripción de la presentación:

1 Preparado por: Prof. Roberto O. Rivera Rodríguez 1 Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neumann Gandía

2 Preparado por: Prof. Roberto O. Rivera Rodríguez 2 Sistema de ecuaciones Def. Un sistema de ecuaciones lineales es un conjunto de dos o más ecuaciones lineales en las mismas variables. La solución de un sistema de ecuaciones es la intersección de los conjuntos de soluciones de cada una de las ecuaciones del sistema.

3 Preparado por: Prof. Roberto O. Rivera Rodríguez 3 Con frecuencia es necesario determinar una solución común a dos o más ecuaciones lineales. Nos referimos a estas ecuaciones como un sistema de ecuaciones lineales. Un sistema de ecuaciones lineales es un conjunto de dos o más ecuaciones lineales en las mismas variables. La solución de un sistema de ecuaciones es la intersección de los conjuntos de soluciones de cada una de las ecuaciones del sistema. Por ejemplo, 3x + 2y = - 3 ¾y – 4x = 0 sistema de ecuaciones lineales.

4 Preparado por: Prof. Roberto O. Rivera Rodríguez 4 Una solución de un sistema de ecuaciones es un par ordenado (o pares) que satisfacen todas las ecuaciones del sistema y =x + 5 -2x + y = 4 y =x + 5 (1,6) -2x + y = 4 (1,6) 6=1 +5 6=6 verdadero -2(1) +6 = 4 -2 + 6 =4 4=4 verdadero El par ordenado (1,6) satisface ambas ecuaciones y es la solución del sistema de ecuaciones.

5 Preparado por: Prof. Roberto O. Rivera Rodríguez 5 Resolver gráficamente Para resolver un sistema de ecuaciones lineales con dos variables de manera gráfica, grafique todas las ecuaciones del sistema en el mismo sistema de coordenadas. La solución del sistema será el par o pares ordenados comunes a todas las rectas del sistema. solución

6 Preparado por: Prof. Roberto O. Rivera Rodríguez 6 Cuando graficamos dos rectas, existen tres situaciones posibles ; si las rectas se intersecan en exactamente un punto, tiene exactamente una solución y el sistema es CONSISTENTE. Solución Consistente

7 Preparado por: Prof. Roberto O. Rivera Rodríguez 7 Si las rectas son paralelas, el sistema no tiene solución y decimos que el sistema es INCONSISTENTE. No tiene solución INCONSISTENTE

8 Preparado por: Prof. Roberto O. Rivera Rodríguez 8 Si las ecuaciones representan la misma recta, entonces cada punto de la recta satisface a ambas ecuaciones. Este sistema tiene un número infinito de soluciones y se conoce como un sistema DEPENDIENTE. Infinitas soluciones

9 Preparado por: Prof. Roberto O. Rivera Rodríguez 9 Resuelva el siguiente sistema de ecuaciones en forma gráfica y – x =2 Y + x = 4 (1,3) Solución (1,3) Sistema consistente

10 Preparado por: Prof. Roberto O. Rivera Rodríguez 10 Resuelve gráficamente gráficamente 2x – y = -5 x + 2y = 0 (-2,1)

11 Preparado por: Prof. Roberto O. Rivera Rodríguez 11 Resolver por el método de SUSTITUCIÓN Principio de sustitución: Si a = b, entoces a puede intercambiarse por b o vice versa en cualquier expresión. Si y=3x + 6 y 2y – 4x = -2, entonces 2(3x + 6)-4x=-2

12 Preparado por: Prof. Roberto O. Rivera Rodríguez 12 El método de SUSTITUCIÓN 1. Resuelva una de las ecuaciones respecto de una variable en términos de la otra. 2. Sustituya la expresión hallada para la variable del paso 1 en la otra ecuación. Con esto obtendrá una ecuación con una sola variable. 3. Resuelva la ecuación obtenida en el paso 2 para determinar el valor de esta variable.

13 Preparado por: Prof. Roberto O. Rivera Rodríguez 13 Continuación 4. Sustituya el valor encontrado en el paso 3 en la ecuación del paso 1. Resuelva la ecuación para determinar la variable restante. 5. Compruebe su solución en todas las ecuaciones del sistema.

14 Preparado por: Prof. Roberto O. Rivera Rodríguez 14 y – 2x = 5 Y + 4x = 2 y=2x + 5 2x + 5 + 4x = 2 6x + 5 =2 6x = - 3 x = -½ y –2(-½) = 5 y + 1 = 5 y =5-1 y=4 La solución es (-½,4)

15 Preparado por: Prof. Roberto O. Rivera Rodríguez 15 2x + y – 11=0 x + 3y = 18 x = -3y + 18 2(-3y + 18) + y – 11=0 -6y + 36 + y – 11=0 -5y + 25 =0 -5y = -25 y = 5 X +3(5)=18 x + 15 =18 x =18-15 x = 3 La solución es el par ordenado (3,5).

16 Preparado por: Prof. Roberto O. Rivera Rodríguez 16 Si al resolver un sistema de ecuaciones ya sea por sustitución o por el método de suma, se llega a una ecuación falsa, como 5=6 ó 0=3, el sistema es inconsistente y no tiene solución. Si se obtiene una ecuación verdadera, como 7=7 o 0=0, el sistema es dependiente y tiene un número infinito de soluciones.

17 Preparado por: Prof. Roberto O. Rivera Rodríguez 17 Un tercer método (y con frecuencia el más sencillo) para resolver un sistema de ecuaciones es el método de la SUMA o de eliminación. El objetivo de este proceso es obtener dos ecuaciones cuya suma sea una ecuación con una sola variable.

18 Preparado por: Prof. Roberto O. Rivera Rodríguez 18 Método de la SUMA 1.En caso necesario, reescriba la ecuación el la forma general ( ax + by = c). 2. Si es necesario, multiplique una o ambas ecuaciones por una constante ( o constantes) para que al sumar las ecuaciones, la suma contenga sólo una variable. 3. Sume los lados respectivos de las ecuaciones. Con esto se obtiene una sola ecuación con una variable. Continuación

19 Preparado por: Prof. Roberto O. Rivera Rodríguez 19 Continuación 4. Despeje la variable en la ecuación obtenida en el paso 3. 5. Sustituya el valor determinado en el paso 4 en cualquiera de las ecuaciones originales. Resuelva esa ecuación para determinar el valor de la variable restante. 6. Compruebe su solución en todas las ecuaciones del sistema.

20 Preparado por: Prof. Roberto O. Rivera Rodríguez 20 Resuelva el (los) siguientes ejemplos: x + y = 6 2x – y = 3 x + y = 6 2x – y = 3 3x + 0 = 9 3x = 9 x = 3 x + y =6 3 + y = 6 y = 3 La solución es (3,3)

21 Preparado por: Prof. Roberto O. Rivera Rodríguez 21 2x + y = 11 x + 3y = 18 2x + y = 11 -2[x + 3y = 18] 2x + y = 11 -2x – 6y =-36 2x + y = 11 -2x – 6y =-36 0 – 5y =-25 y = 5 2x + y = 11 2x + 5 =11 2x = 6 x = 3 La solución es (3,5).

22 Preparado por: Prof. Roberto O. Rivera Rodríguez 22 2x + 3y =7 5x – 7y = -3 -5[2x + 3y =7] 2[5x – 7y = -3] -10x + -15y =-35 10x – 14y = -6 -10x + -15y =-35 10x – 14y = -6 -29y = -41 La solución es

23 Preparado por: Prof. Roberto O. Rivera Rodríguez 23

24 Preparado por: Prof. Roberto O. Rivera Rodríguez 24 Determinante Asociado a cada sistema de ecuaciones cuadrado hay un número que se conoce como el determinate de ese sistema. El símbolo para denotar al determinante de la matriz A es o det (A). Por ejemplo si entonces el determinante del sistema se denota como

25 Preparado por: Prof. Roberto O. Rivera Rodríguez 25 Definición de determinante de orden 2 Sea el determinante está dado por

26 Preparado por: Prof. Roberto O. Rivera Rodríguez 26 Ejemplos: Halla los siguientes determinantes: 1) 2) Solución: 1) (3)(2) – (4)(-5) = 6 + 20 = 26 2) (3)(4) – (1)(5) =12 – 5 = 7

27 Preparado por: Prof. Roberto O. Rivera Rodríguez 27 Regla de Cramer para matrices 2 x 2 Considera las siguientes matrices con sus determinantes e inversas: ¿ Puedes ver alguna razón entre la matriz original, su determinante y su inversa?

28 Preparado por: Prof. Roberto O. Rivera Rodríguez 28 Regla de Cramer para matrices 2 x 2 A continuación se verá cómo surgen los detereminantes de manera natural en el proceso para resolver sistemas de ecuaciones lineales. Resuelve el siguiente sistema de ecuaciones de la forma tradicional. Luego, halla los siguientes determinantes: ¿Existe alguna relación entre la solución al sistema de ecuaciones y los determinates hallados?

29 Preparado por: Prof. Roberto O. Rivera Rodríguez 29 Regla de Cramer para matrices 2 x 2 (cont.) Dado el sistema de ecuaciones y el determinante entonces la solución al sistema está dado por y

30 Preparado por: Prof. Roberto O. Rivera Rodríguez 30 Preparado por: Roberto O. Rivera Rodríguez Ejercicios Instrucciones: Utiliza la regla de Cramer para hallar la solución a los siguientes sistemas de ecuaciones: 1) 2) Solución: 1) x = 1 y = -1 2) x = -1 y = 1


Descargar ppt "Preparado por: Prof. Roberto O. Rivera Rodríguez 1 Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neumann Gandía."

Presentaciones similares


Anuncios Google