La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Hasta ahora se ha estudiado como estimar una propiedad utilizando los valores conocidos de dicha propiedad obtenidos en puntos vecinos o cercanos o bien.

Presentaciones similares


Presentación del tema: "Hasta ahora se ha estudiado como estimar una propiedad utilizando los valores conocidos de dicha propiedad obtenidos en puntos vecinos o cercanos o bien."— Transcripción de la presentación:

1

2 Hasta ahora se ha estudiado como estimar una propiedad utilizando los valores conocidos de dicha propiedad obtenidos en puntos vecinos o cercanos o bien como hacer uso de una función de tendencia para guiar la estimación de la propiedad. A continuación estudiaremos algunas técnicas geoestadísticas propuestas para obtener estimaciones de la propiedad de interés cuando se dispone de observaciones de otras variables relacionadas con la variable en estudio. Geoestadística multivariada Entre este tipo de técnicas se encuentran: Cokriging Simple y Ordinario Cokriging colocado (collocated cokriging)

3 Geoestadística multivariada Al igual que en el caso de geoestadistica univariada, lo fundamental es contar con una herramienta que mida la correlación espacial de las variables involucradas y su interrelación. La correlación espacial de cada una de las variables involucradas se obtiene como antes a través de la función de covarianza o del variograma. La correlación espacial conjunta o la interrelación se obtiene a traves de la funcion de covarianza cruzada que estudiaremos a continuación

4 VARIOGRAMA CRUZADO comportamiento espacial en conjunto

5 Si Z y S son funciones aleatorias estacionarias o intrínsecas, el variograma cruzado de ellas se define como : Para su estimación se utiliza el variograma cruzado experimental

6 1) 2) 3) El variograma cruzado es una función simétrica Algunas propiedades del variograma cruzado son: 4) Relación con la función de covarianza cruzada La función de covarianza cruzada se define como:

7 La función de covarianza cruzada se relaciona con el variograma cruzado a través de la ecuación Esta expresión se debe al hecho de que la función de covarianza no necesariamente es simétrica. Es decir, en general Sin embargo, una práctica común es asumir que la función de covarianza es simétrica. Esto simplifica enormemente los cálculos asociados a la estimación de la función de covarianza conjunta. En ese caso,

8 5) Relación de dependencia Es importante tener presente que entre el variograma cruzado y los variogramas de cada una de las variables, existe una relación de dependencia. Por ejemplo, se puede demostrar que: Desigualdad de Hölder En particular, El producto de cada uno de los sill de los variogramas individuales es mayor que el cuadrado del sill del variograma cruzado. En consecuencia, el modelo de variograma cruzado no puede ser escogido independientemente de cada uno de los modelos de variogramas individuales !

9 5) El modelo de coregionalización lineal Anteriormente se aseguraba que la varianza de combinaciones lineales de la variable de interés era positiva utilizando modelos de variograma. Al incluir más variables, es necesario asegurar que la varianza de combinaciones lineales de estas sea positiva. Para lograr esto se utiliza el modelo lineal de coregionalización, que establece que los variogramas individuales y el cruzado son combinaciones lineales de modelos de variogramas. En el caso de 2 variables se tiene que:

10 Las ecuaciones anteriores se puede escribir en forma matricial como: Cada una de las matrices que contienen los variogramas son definidas positivas, por lo tanto para que el resultado final sea una matriz definida positiva debe ocurrir que:

11 El uso del modelo de coregionalización lineal tiene las siguientes consecuencias: 1) Todo estructura presente en el variograma cruzado deber estar presente en los variogramas individuales. El recíproco no es cierto. 2) Los variogramas individuales tendrán todos el mismo rango y la forma del variograma será la misma. Sólo se diferenciarán en los valores del sill Esto hace que en general resulte engorroso ajustar variogramas experimentales de las variables y sus variogramas cruzados, ya que al cambiar los valores del variograma cruzado cambian los valores de los variogramas individuales. La forma de juzgar la bondad del ajuste es establecer un compromiso entre el ajuste de cada uno de los variogramas y su desviación de los valores experimentales. 3) Los variogramas individuales tendrán todos la misma dirección de anisotropía

12 4) Envolvente del variograma cruzado Debido a la relación entre los parámetros u, v y w el variograma cruzado se encuentra siempre dentro de dos curvas que conforman su envolvente. h

13

14 Planteamiento básico de la estimación por Cokriging: Cokriging Considerar la estimación decomo una combinación lineal de las observaciones disponibles de Z más combinaciones lineales de las observaciones de las variables relacionadas. Propiedad o variable principal, por ejemplo porosidad Información o variable secundaria, por ejemplo impedancia acústica Ejemplo: + Combinación lineal de la variable principal Combinación lineal de la variable secundaria

15 Cokriging Propiedad o variable principal, por ejemplo porosidad Variables secundarias, por ejemplo atributos sísmicos En el caso general lo único que se complica es la notación : Combinaciones lineales de las variables secundarias Combinación lineal de la variable principal + +++

16 Cokriging El caso más simple se denomina cokriging simple y la hipótesis básica es la estacionaridad de todas las variables junto con el hecho de que se asume que las medias de todas las variables son conocidas. Esto es, COKRIGING SIMPLE A continuación se obtendrán las ecuaciones de cokriging simple en el caso en que se considera solo una variable secundaria. En este caso el estimador propuesto es

17 Cokriging Al igual que antes, las condiciones de optimalidad son: 1) Estimador insesgado 2) mínima La primera condición se obtiene automáticamente al utilizar que: Con lo cual,

18 Cokriging La condición de varianza mínima se obtiene derivando respecto a los parámetros y e igualando a cero cada una de las derivadas obtenidas. Para calcular explícitamente la expresión de la varianza hay que proceder con cautela debido a que aparecen nuevos términos a considerar.

19 Cokriging Covarianza de la variable principal Covarianza de la variable secundaria Covarianza cruzada entre la variable primaria y la variable secundaria

20 Cokriging Al calcular las derivadas respectivas se obtiene que Ahora la expresión detallada del sistema de ecuaciones es

21 Cokriging

22 COKRIGING ORDINARIO Al igual que en el caso de kriging ordinario, se asume que las medias de las variables son desconocidas y se imponen condiciones para filtrarlas. + El estimador propuesto es Con lo cual, Y se obtienen las condiciones,

23 Cokriging Ahora se procede nuevamente como en el kriging ordinario pero con K+1 parámetros de Lagrange. Cuando se tiene tan solo una variable secundaria, el sistema de ecuaciones del cokriging ordinario es

24 Cokriging OBSERVACIONES 1) Con sólo 2 variables se requieren 4 funciones de covarianza. En general, con N variables secundarias se requieren 2 N+1 funciones de covarianza. 3) Las variables secundarias deben poseer un número mucho mayor de observaciones que la variable principal. 2) Debe existir una correlación lineal entre las variable principal y las variables secundarias

25 Cokriging 4) Imposible estimar las covarianzas cruzadas con datos NO coincidentes Variable secundaria (impedancia acústica) Variable principal (porosidad)

26 Cokriging 5) Resultados satisfactorios se obtienen con datos parcialmente coincidentes Variable secundaria (impedancia acústica) Variable principal (porosidad) Variable principal y variable secundaria

27 Cokriging 6) Con datos totalmente coincidentes Conveniente para estimar de manera consistente el tope y la base de un yacimiento Tope Base No se obtiene una mejora sustancial sobre los métodos de kriging cuando la variable secundaria es la información sísmica.

28 Cokriging Cuando las variables están intrínsicamente relacionadas, es decir cuando ocurre que los modelos de variograma o covarianza de todas las variables son proporcionales a un un mismo modelo de variograma o covarianza, entonces el kriging y el cokriging con datos totalmente coincidentes son iguales. !

29

30 Collocated Cokriging Una simplificación al sistema de ecuaciones del Cokriging se obtiene cuando se considera solo una variable secundaria y únicamente en el punto donde se requiere realizar la estimación. En este caso, el estimador propuesto es Al igual que antes se obtienen distintas versiones cuando se conoce o no la media de las variables involucradas. A continuación estudiaremos el cokriging colocado simple y el cokriging colocado ordinario.

31 Collocated Cokriging COLLOCATED SIMPLE COKRIGING La hipótesis básica es la estacionaridad de las variables junto con el hecho de que se asume que las medias de las variables son conocidas. Esto es, En este caso, el estimador propuesto es Al proceder exactamente igual que en el caso de cokriging simple se obtiene que:

32 Collocated Cokriging Ahora se obtiene un sistema de ecuaciones de N+1 variables con N+1 incógnitas en lugar del sistema de N+ N 1 ecuaciones con N+ N 1 variables del kriging simple con solo una variable secundaria. El sistema de ecuaciones se escribe en forma matricial como:

33 Collocated Cokriging Es importante observar que: No se requiere conocer la función de covarianza de la variable secundaria. El sistema sólo depende de la función de covarianza de la variable principal y de la función de covarianza cruzada. Es necesario conocer el valor de la variable secundaria en todo los puntos donde se requiere estimar el valor de la variable primaria.

34 Collocated Cokriging Aproximación de la covarianza cruzada En el cokriging colocado se asume que la función de covarianza cruzada y la función de covarianza de la variable principal son proporcionales. Es decir, que Esta hipótesis tiene sentido porque se asume una relación lineal entre las variables. Además, en particular se tiene que:

35 En consecuencia, Collocated Cokriging Correlación lineal entre las variables Z y S. Esta expresión permite manipular el coeficiente de correlación y obtener así diversas estimaciones de la variable principal para distintos grados de correlación con la variable secundaria. Es importante cuando se tiene incertidumbre sobre el grado de relación lineal de las variables involucradas.

36 COLLOCATED ORDINARY COKRIGING Collocated Cokriging Al igual que en el caso del cokriging ordinario se asume que las medias de la variable principal y la variable secundaria son desconocidas y constantes. Ahora el estimador propuesto es: Bajo esta suposición, la forma del estimador es distinta puesto que si se utiliza la anterior se obtiene =0 y la variable secundaria no es tomada en cuenta. Valores de la variable principal y la variable secundaria medidos en los mismos puntos Valor de la variable secundaria en el punto a estimar

37 Collocated Cokriging Para que el estimador sea insesgado se debe verificar que: Ahora se procede como antes, considerando dos multiplicadores de Lagrange para incluir las restricciones anteriores. El sistema de ecuaciones es:

38

39 La idea consiste en asumir que la propiedad observada Z(u) es la suma de diversos factores aleatorios e independientes. Es decir, Los factores no son directamente observables, sólo se cuenta con la observación Z(u). La descomposición anterior puede variar dependiendo de las condiciones asumidas sobre la propiedad observada. Por ejemplo, si se conoce el valor promedio m de la propiedad entonces se considera y los factores como funciones aleatorias independientes de media cero. Kriging Factorial

40 La importancia de considerar a los factores como independientes es que se puede demostrar que: Y es esta relación la que permite obtener estimaciones de cada una de los factores en la descomposición de la variable Z. A continuación se estudiarán las ecuaciones para la obtención de dichas estimaciones.

41 Kriging Factorial CASO 1 Se asume que Z es una función aleatoria estacionaria con media igual a cero que se descompone como suma de K factores aleatorios de media cero e independientes. El estimador propuesto para el factor j es: Los Valores observados se utilizan para estimar los valores de los factores

42 Kriging Factorial Como la variable y cada uno de los factores tienen media cero se obtiene directamente que: Respecto a la varianza del error, se tiene que: Independencia de los factores

43 Kriging Factorial A partir de esta expresión se tiene que: Y al igualar a cero se obtiene el sistema de ecuaciones: Matriz de kriging simple de Z Vector asociado a la función de covarianza del factor j

44 Kriging Factorial 1) La matriz de kriging es siempre la misma y lo que cambia es el vector asociado a la función de covarianza del factor j. Esto implica que es necesario invertir la matriz sólo una vez para obtener la estimación de todos los factores. Observar que: 2) Si alguno de los factores está asociado a un effecto nugget puro entonces este no se puede estimar. Este procedimiento sólo cambia los valores de las variable Z en los puntos observados.Para efectos prácticos es mejor no considerarlo en la descomposición. 3) El número de factores se puede obtener a partir del número de estructuras presentes en la función de covarianza o variograma de la variable Z 4) La descomposición de la variable Z en factores debe tener sentido físico y no ser producto solamente de las estructuras observadas en el variograma.

45 Kriging Factorial Z

46

47 CASO 2 Se asume que Z es una función aleatoria estacionaria con media igual a m que se descompone como suma de K factores aleatorios de media cero e independientes. El estimador propuesto para el factor j es: Ahora se tiene que Kriging Factorial

48 Y por lo tanto, para que el estimador sea insesgado se debe imponer la condición Ahora se procede como en el caso de kriging ordinario y se obtiene el sistema de ecuaciones

49 Matriz de kriging oridnario de Z Vector asociado a la función de covarianza del factor j Kriging Factorial

50 CASO 3 Se asume que Z es una función aleatoria con una función de tendencia m(u) conocida que se descompone como suma de K factores aleatorios de media cero e independientes. El estimador propuesto para el factor j es: Ahora se tiene que Kriging Factorial

51 Y por lo tanto, para que el estimador sea insesgado se debe imponer la condición Kriging Factorial Ahora se procede como en el caso de kriging universal y se obtiene el sistema de ecuaciones

52 CASO 4 Se asume que Z es una función aleatoria con una función de tendencia m(u) desconocida que se descompone como suma de K factores aleatorios independientes. El problema que se tiene ahora es saber cuál es la contribución de cada uno de los factores a la tendencia de la función Z ya que El problema puede ser resuelto asumiendo dos condiciones que a priori resultan arbitrarias. Kriging Factorial

53 Se asume que solo uno de los factores está asociado a la función de tendencia que se observa en la variable Z mientras que los otros tienen media cero. Asi, se tendría por ejemplo: Análogamente al caso de kriging universal, se asume que la función de tendencia es de la forma:

54 Kriging Factorial De esta forma, Y al igual que en el caso de kriging universal hay que imponer la condición siguiente para asegurar que el estimador es insesgado: ó

55 Kriging Factorial Ahora se procede como en el caso de kriging universal y se obtiene el sistema de ecuaciones Donde (Función Delta de Kronecker)

56 Kriging Factorial FILTERING Hasta ahora se ha visto como estimar cada uno de los factores presentes en la descomposición de Z. Otra aplicación posible es obtener una estimación de la variable original Z pero filtrando uno o varios factores. Z f (u) se obtiene al filtrar la componente Z 1 (u). Por consiguiente, una estimación de Z filtrando el valor de Z 1 se obtiene al estimar Z f (u)

57 Kriging Factorial Asumiendo que todas las variables tienen media cero, el estimador es insesgado. Además, la varianza del error es Por la independencia de los factores

58 Y al igualar a cero se obtiene el sistema de ecuaciones: En consecuencia, Kriging Factorial

59 Debido a la independencia entre los factores, la función de covarianza de la variable filtrada se conoce, ya que


Descargar ppt "Hasta ahora se ha estudiado como estimar una propiedad utilizando los valores conocidos de dicha propiedad obtenidos en puntos vecinos o cercanos o bien."

Presentaciones similares


Anuncios Google