La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Fundamentos de Lógica Difusa (Fuzzy) José Edinson Aedo Cobo, Msc. Phd. Departamento de Ing. Electrónica Universidad de Antioquia.

Presentaciones similares


Presentación del tema: "Fundamentos de Lógica Difusa (Fuzzy) José Edinson Aedo Cobo, Msc. Phd. Departamento de Ing. Electrónica Universidad de Antioquia."— Transcripción de la presentación:

1 Fundamentos de Lógica Difusa (Fuzzy) José Edinson Aedo Cobo, Msc. Phd. Departamento de Ing. Electrónica Universidad de Antioquia

2 OBJETIVOS Este módulo pretende introducir los sistemas difusos como una herramienta para su utilización en diversas aplicaciones en ingeniería Los sistemas difusos pueden usarse en muchos campos de la ingeniería, por ejemplo: - Control de procesos. - Modelado no lineal. - procesamiento de imágenes. - Comunicaciones. - Problemas de optimización. - Sistemas para toma de decisiones.

3 3 Sistemas difusos usados como controladores: Un sistema difuso implementa una función no lineal a partir de la definición de un conjunto de reglas. En un sistema de control típico: Sistema difusoproceso detectores x0x0 x(t) e(t) u(t) z x(t) x 0 = setpoint, e= error, u= acción de control, x´= salidas del proceso x(t)= valores medidos, z= ruido u=f(e)

4 4 Parámetros a ser determinados en la implementación de Un sistema difuso: Los parámetros determinan la estructura del sistema difuso y por consiguiente su comportamiento de entrada/salida: 1. Número de entradas y salidas del sistema. Para cada entrada y salida se deben definir las funciones de pertenencia. Su forma. También los factores de escalamiento de las entradas y salidas. 2. Número de reglas. La estructura de la base de conocimiento. Peso de las reglas. 3. Método de fuzificación y defuzificación. 4. Operadores: para la inferencia. Para el conectivo and. Para la agregación de las reglas.

5 5 Metodología para obtener los parámetros: Principalmente las reglas y los conjuntos difusos asociados a cada entrada y salida: Experiencia del operador. Conocimiento del ingeniero del control sobre el comportamiento del sistema. Modelado de las acciones de control del operador. A partir de datos experimentales del control deseado: a. Aplicando métodos heurísticos para obtener los parámetros a partir de estos datos. b. Utilizando técnicas de aprendizaje (derivadas de las redes neuronales) c. Utilizando técnicas de optimización tales como los algoritmos genéticos.

6 6 Ejemplo: Considere un control para un sistema dinámico cuya respuesta en el tiempo al escalón tiene una salida tipo S como se muestra en la Figura. En general un sistema dinámico de esta naturaleza es modelado por un sistema de ecuaciones diferenciales del tipo: t x(t)

7 7 Ejemplo (continuación): Dado un punto de referencia (setpoint), x 0, se debe aplicar una acción de control para que el sistema alcance este punto sin muchas oscilaciones y de forma rápida. Una respuesta típica de un sistema de control es el siguiente: t x(t) x0x0 Para efecto llevar a cabo este comportamiento se define un controlador con variables de entrada: el error, e(t)=x 0 -x(t) y la tendencia (variación) del error con el tiempo: de(t)= e(t)-e(t´) donde t < t´y t t, (más precisamente de(t)/dt). La salida sería la acción de control u(t) (el cambio de la salida con respecto a la salida actual).

8 8 Ejemplo (continuación): e(t) Si dividimos las entradas y salida en 7 regiones definidas con conjuntos difusos tipos triangular, con la nombres siguientes: NB( negative big), NM(negative medium), NS(negative small), ZE (cero), PB( positive big), PM(positive medium), PS(positive small). control de(t) u(t)

9 9 Ejemplo (continuación): e(t) Las reglas se pueden crear de forma de acuerdo con comportamiento Deseado. Por ejemplo la regla: Si el error es cero y el cambio del error es cero entonces el cambio del control es cero. Establezca otras reglas para controlar el sistema. control de(t) u(t)

10 10 Ejemplo de una técnica heurística para determinar un sistema difuso a partir de datos experimentales (table-lookup scheme) (Li-Xin Wang, Adaptive fuzzy systems and control) Es un método simple para el diseño de sistemas difusos cuando se tiene datos experimentales de entrada/salida del sistema. Sean n datos de entrada/salida del sistema deseado de dos entradas (x 1,x 2 ) y una salida (y): dato1 dato2 Técnicas Heurísticas para determinar la estructura de un sistema difuso

11 11 Ejemplo de una técnica heurística para determinar un sistema difuso a partir de datos experimentales (table-lookup scheme) Es un método consiste en 5 pasos: Paso1: Se divide los espacios de entradas y salidas en regiones difusas. Con x 1 y x 2 siendo las entradas, y la variable y la salida, asumimos que los dominios son: x1x1 x2x2 y Cada dominio se divide en 2N+1 regiones con N=1,2,3.. La regiones se denominan: SN, SN-1, …, S1, CE, B1,…,BN-1,BN y se asignan funciones trapezoidales a cada una.

12 12 x1x1 x2x2 y S2 S1 CE B1 B2 S3 S2 S1 CE B1 B2 B3 S2 S1 CE B1 B2

13 13 Ejemplo de una técnica heurística para determinar un sistema difuso a partir de datos experimentales (table-lookup scheme) Paso2: primero, determine los grados de pertenencia para cada dato de entrada/salida. Determine para cada dato las regiones con mayor pertenencia: Genere la regla correspondiente: if x 1 is B1 and x 2 is S1 then y is CE

14 14 Ejemplo de una técnica heurística para determinar un sistema difuso a partir de datos experimentales (table-lookup scheme) Para el segundo dato Las regiones con mayor pertenencia: Genere la regla correspondiente: if x 1 is B1 and x 2 is CE then y is B1

15 15 Ejemplo de una técnica heurística para determinar un sistema difuso a partir de datos experimentales (table-lookup scheme) Paso3: se da un grado a cada regla de acuerdo con el los valores de pertenencia obtenidos: El mismo procedimiento se realiza para todas las reglas.

16 16 Ejemplo de una técnica heurística para determinar un sistema difuso a partir de datos experimentales (table-lookup scheme) Paso4: Se Crea la base de reglas combinadas (el conjunto de reglas) analice las reglas con el mismo antecedente pero con diferente consecuente. Escoja la que tiene mayo grado. Adicione reglas suministradas por expertos si existen. Paso5: Determine el mapeo, usando la máquina de inferencia. Use en este caso, el operador producto, para calcular el grado de activación de las reglas. Ejemplo de aplicación: Truck Backer-Upper control

17 17 Sistemas difusos tipo Sugeno: Los sistemas difusos tipo Sugeno (o sistemas tipo TSK, Takagi, Sugeno, Kang) se caracterizan por tener reglas de la forma: R: Si x is A y w es B then z=f(x,w) Donde, A y B son conjuntos difusos definidos en el antecedente de la Regla y f(x,w) es una función polinómica que depende de las entradas. Si f(x,w) es un polinomio de primer orden se dice que el sistema de Sugeno es de primer orden. Si f es una constante se dice que es un sistema de Sugeno de orden cero.

18 18 Sistemas difusos tipo Sugeno: Ejemplo de un sistema Sugeno de orden 1 con dos entradas, una salida y 4 reglas: R1: Si x es pequeño y w es pequeño entonces z=-x+w+1 R2: Si x es pequeño y w es grande entonces z=-w+3 R3: Si x es grande y w es pequeño entonces z=-x+3 R4: Si x es grande y w es grande entonces z=x+w+2

19 19 Cómo se calcula la salida en un sistema difuso tipo Sugeno ? Asumamos que tenemos un sistema difuso tipo Sugeno de dos reglas y dos entradas : Regla 1 : Si x es A 1 y w es B 1 entonces f 1 = p 1 x+q 1 w+r 1 Regla 2 : Si x es A 2 y w es B 2 entonces f 2 = p 2 x+q 2 w+r 2 P: Si x es A* y w es B* Igual que en las reglas difusas (tipo Mamdani) el grado de activación de las reglas será: Regla1: Regla 2: Este operador puede ser el producto

20 20 Cómo se calcula la salida en un sistema difuso tipo Sugeno ? Si los conjuntos A* y B* son singletons tal que: 1 en x = a 1 en w = b μ A* (x) = μ B* (w)= 0 para x a 0 para w b Entonces: Para la primera regla: Luego: Usando el producto

21 21 Cómo se calcula la salida en un sistema difuso tipo Sugeno ? Para la segunda regla: Luego: Usando el producto

22 22 Cómo se calcula la salida en un sistema difuso tipo Sugeno ? La salida del sistema difuso tipo Sugeno es: Donde:

23 23 De forma gráfica: A1A1 A2A2 B1B1 B2B2 A* B*

24 24 El sistema difuso tipo Sugeno como una red adaptativa se le denomina ANFIS (Adative networks-based fuzzy inference systems) Una red adaptativa: es una red cuyo comportamiento de entrada/salida es determinado por los valores de un conjunto de parámetros modificables. Estructuralmente una red adaptativa esta compuesta por un conjunto de nodos (fijos y adaptativos) unidos por interconexiones por las cuales fluye la información (en una sola dirección).

25 x1x1 x2x2 x8x8 x9x9 nodos adaptativosnodos fijos Redes adaptativas: Están compuestas de nodos adaptativos y nodos fijos Ejemplo de red adaptativa: No poseen parámetros capa1 capa2 capa3 poseen parámetros

26 26 x1x1 x2x2 x3x3 x1x1 x2x2 x4x4 f3f3 f4f4 f3f3 Ejemplo: parámetros x 4 =f 4 (x 3 ) = 1 si x si x 3 <0 x4x4 f4f4 x3x3 La red adaptativa : Modelo del neuron (perceptron)

27 27 Un sistema difuso tipo Sugeno se puede convertir en una red Adaptativa de 5 capas. Sea el sistema: Regla 1 : Si x es A 1 y w es B 1 entonces f 1 = p 1 x+q 1 w+r 1 Regla 2 : Si x es A 2 y w es B 2 entonces f 2 = p 2 x+q 2 w+r 2 Para un una entrada x y w (genérica) la salida del sistema se puede calcular: Grados de activación de las reglas

28 28 A1A1 A2A2 B1B1 B2B2 A1A1 A2A2 B1B1 B2B2 x y N N xy xy capa 1capa 2capa 3capa 4capa 5 f

29 29 Capa1: nodos adaptativos. Siendo las entradas x y w, se evalúan las funciones de pertenencia: Los parámetros son los que definen la función de pertenencia Capa2: nodos fijos. Calcula el grado de pertenencia. Usando el operador producto:

30 30 Capa3: nodos fijos. Calcula la razón de los grados de activación. Grados de activación normalizados Capa4: nodos adaptativos. Calcula el grado de total de cada regla El conjunto de parámetros es {p i,q i,r i }

31 31 Capa5: nodos fijos. Calcula la salida total Grados de activación normalizados Nota importante: Un sistema difuso con la estructura anterior es similar a una red neuronal multicapa, por consiguiente se pueden usar algoritmos de entrenamiento para determinar los parámetros del sistema.

32 32 Ejercicio Dibujar la red adaptativa correspondiente al siguiente sistema Difuso. R1: Si x es pequeño y w es pequeño entonces z=-x+w+1 R2: Si x es pequeño y w es grande entonces z=-w+3 R3: Si x es grande y w es pequeño entonces z=-x+3 R4: Si x es grande y w es grande entonces z=x+w+2


Descargar ppt "Fundamentos de Lógica Difusa (Fuzzy) José Edinson Aedo Cobo, Msc. Phd. Departamento de Ing. Electrónica Universidad de Antioquia."

Presentaciones similares


Anuncios Google