La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

RELACIONES Y FUNCIONES. SUBCONJUNTO Sean A y B dos conjuntos. Al conjunto A se le llama un subconjunto de B si todo elemento de A es también elemento.

Presentaciones similares


Presentación del tema: "RELACIONES Y FUNCIONES. SUBCONJUNTO Sean A y B dos conjuntos. Al conjunto A se le llama un subconjunto de B si todo elemento de A es también elemento."— Transcripción de la presentación:

1 RELACIONES Y FUNCIONES

2 SUBCONJUNTO Sean A y B dos conjuntos. Al conjunto A se le llama un subconjunto de B si todo elemento de A es también elemento de B. Sin embargo, no todo elemento de B necesita ser un elemento de A. Esto se expresa como : A B

3

4 TUPLA Son objetos colocados en cierto orden. Se utilizan para organizar datos. La tupla más común es el par. Si (x, y) es un par, entonces es frecuente limitar x a un conjunto de A e y a un conjunto de B. El conjunto de todos los pares posibles que se pueden obtener se llama producto cartesiano de A y B.

5 PRODUCTO CARTESIANO Sean A y B dos conjuntos. El conjunto de todos los pares ordenados tal que el primer miembro del par ordenado es un elemento de A y el segundo miembro es un elemento de B, se llama el producto cartesiano de A y B y se escribe A X B. A X B = { (x,y) | (x A) & (y B)}

6 RELACIONES Las relaciones son conjuntos, por lo tanto se puede usar la representación de conjuntos para representar relaciones. Una relación n-aria es un conjunto de n-tuplas. Las relaciones binarias con conjuntos de pares

7 REPRESENTACION DE RELACIONES Forma tabular Forma Matricial Forma Gráfica

8 R={(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4) } Representación tabular Representación matricial Representación gráfica

9 PROPIEDADES DE LAS RELACIONES

10 RELACIONES REFLEXIVAS Si todo elemento en A está relacionado con sigo mismo, con símbolos: ( x A) (x,x) R Reflexiva

11 RELACIONES SIMETRICAS Si cuando un elemento está relacionado con un segundo elemento, el segundo también se relaciona con el primero, con símbolos: ( x)( y) ((x,y) R (y,x) R) Simétrica

12 RELACIONES ASIMETRICAS Si cuando un elemento está relacionado con un segundo elemento diferente, el segundo no se relaciona con el primero, con símbolos: ( x)( y) ((x,y) R ^ x y) (y,x) R) ANTISIMETRICA

13 RELACIONES TRANSITIVAS Si cuando un elemento está relacionado con un segundo elemento y el segundo está relacionado con un tercero, entonces el primero está relacionado con el tercero: ( x)( y)( z)((x,y) R ^ (y,z) R) (x,z) R) 23 1

14 FUNCIONES

15 FUNCION Una función es una correspondencia entre dos conjuntos tales que existe exactamente un elemento del segundo conjunto asociado con cada elemento del primero. Al primer conjunto e elementos se le llama dominio y al segundo rango.

16 A={1,3,5,7} B={2,4,6,8} La tabla muestra una función ya que para cada elemento de el conjunto A corresponde exactamente uno del B AB

17 INDUCCION MATEMATICA

18 Este procedimiento de demostración de fórmulas cuantificadas universalmente, verifica primero que se cumple para los casos llamados básicos, y después, suponiendo que se cumple para los casos anteriores, se verifica para un elemento típico x arbitrario. Este último paso es llamado ``inductivo''. Se concluye entonces que la fórmula vale para cualquier x.

19 La inducción es un razonamiento que permite demostrar una infinidad de proposiciones, o una proposición que depende de un parámetro n que toma una infinidad de valores, usualmente en el conjunto de los enteros naturales N.


Descargar ppt "RELACIONES Y FUNCIONES. SUBCONJUNTO Sean A y B dos conjuntos. Al conjunto A se le llama un subconjunto de B si todo elemento de A es también elemento."

Presentaciones similares


Anuncios Google