La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Matemáticas I AGOSTO 2011 UNIDAD II Funciones.

Presentaciones similares


Presentación del tema: "Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Matemáticas I AGOSTO 2011 UNIDAD II Funciones."— Transcripción de la presentación:

1 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Matemáticas I AGOSTO 2011 UNIDAD II Funciones

2 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo 1.1 Introducción.

3 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Hay casos en que no todos los pares ordenados de un producto cartesiano de dos conjuntos responden a una condición dada. Se llama relación entre los conjuntos A y B a un subconjunto del producto cartesiano A x B. Este puede estar formado por un solo par ordenado, varios o todos los que forman parte de A x B. Si establecemos una relación entre los elementos de un mismo conjunto, existen tres propiedades fundamentales que pueden cumplirse en esa relación: 1.Propiedad reflexiva. 2.Simétrica. 3.Transitiva. RELACIONES y FUNCIONES. 1.1 Introducción.

4 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Se llama función a una relación en la cual a cada elemento del conjunto de partida le corresponde sólo un elemento del conjunto de llegada. 1.1 Introducción.

5 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo El concepto de Relación-Función es uno de los más importantes en Matemáticas. Comprenderlo y aplicarlo se verá retribuido muchas veces. En nuestra vida cotidiana frecuentemente hemos tenido experiencia con correspondencias o RELACIONES. Ejemplos de Correspondencias o RELACIONES: En un almacén, a cada artículo le corresponde un precio. A cada nombre del directorio telefónico le corresponde uno o varios números. A cada número le corresponde una segunda potencia. A cada estudiante le corresponde un promedio de calificaciones 1.1 Introducción.

6 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Existen diferentes tipos de expresiones algebraicas, sin embargo algunas de las expresiones que mas nos interesa dentro del cálculo son las funciones. Una función es una regla de asociación que relaciona dos o mas conjuntos entre si; generalmente cuando tenemos la asociación dos conjuntos las función se define como una regla de asociación entre un conjunto llamado dominio con uno llamado contra dominio, también dominio e imagen respectivamente o dominio y rango. Esta regla de asociación no permite relacionar un mismo elemento del dominio con dos elementos del contra dominio. (Esto es una relación) Funciones. Figura 1. Definición de función que se ampara bajo una regla de asociación (relación) de elementos del dominio con elementos del contra dominio, imponiendo la restricción de relacionar un elemento del dominio con uno del contra dominio, sin importar si los elementos del contra dominio puedan estar relacionados con dos o mas del contra dominio. 1.1 Introducción.

7 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Ejemplo. Observemos el siguiente ejemplo: AB AB Este diagrama muestra una función. Ya que ningún elemento de A se relaciona con mas de un elemento de B. 12 Este diagrama muestra una relación. Ya que al menos un elemento de A se relaciona dos elementos de B. 1.1 Introducción.

8 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Observemos otro ejemplo: AB AB Este diagrama muestra una función. Ya que a cada elemento de A se le asigna con un solo elemento de B. 34 Este diagrama muestra una relación. Ya que el elemento 8 es asignado a tres elementos de B. 1.1 Introducción.

9 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Ahora vamos a ver otro ejemplo, pero utilizando conjuntos por extensión. A={(-2,4),(3,9),(4,16),(5,25)} B={(3,2),(3,6),(5,7),(5,8)} C={(2,4),(3,4),(5,4),(6,4)} D={(2,4),(6,2),(7,3),(4,12),(2,6)} Este conjunto muestra una relación. Ya que los elementos 3 y 5 aparecen dos veces como primer elemento del par ordenado. Este conjunto muestra una función. Ya que a el primer elemento de cada par ordenado no se repite. Este conjunto muestra una relación. Ya que el elemento 2 (que es primer elemento)fue asignado a los elementos 4 y 6 (que son el segundo elemento del par ordenado) Este conjunto muestra una función. Ya que a el primer elemento de cada par ordenado no se repite. 1.1 Introducción.

10 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Ahora vamos a ver otro ejemplo, pero con gráficas. 12 Para identificar, si una grafica, es una función o una relación, debemos de trazar una línea Recta Vertical, y ver si interseca en la grafica dos puntos al mismo tiempo. 1.1 Introducción.

11 Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Esta gráfica muestra una relación. Ya que la línea Recta Vertical, interseca en dos puntos a la grafica. Esta gráfica muestra una función. Ya que la línea Recta Vertical, interseca solo en un punto de la grafica. 12 Dibujemos la línea Recta Vertical. Recta Vertical. 1.1 Introducción.


Descargar ppt "Matemáticas I Funciones I.S.C. E.D. Ricardo Bustamante & Raquel Saucedo Matemáticas I AGOSTO 2011 UNIDAD II Funciones."

Presentaciones similares


Anuncios Google