Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porGertrudis Largo Modificado hace 11 años
1
Polisacáridos Polisacáridos de las plantas Polisacáridos de las algas
Polisacáridos de las bacterias Polisacáridos de los hongos Polisacáridos de los animales
2
Polisacáridos de las algas
Agar Ácido algínico Carragenanos Laminarano
3
Agar Polisacáridos de las algas Polisacáridos
Gelificante universalmente utilizado en microbiología para medios de cultivo Se utiliza en industria alimentaria Agarosas modificadas para cromatografía en columna (diferentes tipos), intercambio iónico y electroforesis Utilizadas en helados merenges, quesos, sornbetes etc. Floculante en industria del vino, excipiente de tabletas medicinales Agarosas para cromatografia. Como ftalatos o succinatos en películas fotográficas. Geles de agar para moldes de prótesis dentales y en criminologia. Soluble en agua caliente y gelifica al enfriar
4
Polisacáridos de las algas
Agar Se obtiene de algas rodofíceas de los géneros Gelidium y Gracillaria Es una mezcla de tres tipos de polisacáridos: (el principal componente) Una Denominado a veces agar-agar ó gelatina de Japón
5
Polisacáridos de las algas Agar Agarosa
Polimero lineal de Pm Geles por formar dobles hélices en disolución Alternadas Unidades(1’3)-b-D-galactopiranosilo Unidades(1’4) 3,6 anhidro- a-L -galactopiranosilo Agarosas industriales Pm menor ( ) por degradación
6
Polisacáridos de las algas Agaropectina Agar
Igual cadena principal que agarosa pero con ramificaciones Pocos R= R= H o Ácido glucopiranosidurónico 4,6 acetal del ácido pirúvico
7
Polisacáridos de las algas
Galactana sulfatada Agar o Pocas unidades =
8
Polisacáridos de las algas
Agar Ácido algínico Carragenanos Laminarano
9
Polisacáridos de las algas Ácido algínico
Presente en las algas pardas (feofíceas) Complejos con metales y con iones calcio da geles Análogo con ácido manurónico del ácido pectico Espesante, dispersante y emulgente En cosméticos alimentación y medicamentos Para fabricar polímeros con oxido de etileno.
10
Polisacáridos de las algas
Alginatos Como espesantes: extintores de fuego, detergentes líquidos y champús, teñidos textiles Formador de suspensiones y estabilizante : En pinturas, en aliños de ensaladas y en pasta de dientes. En cerveza el propilénglicol alginato evita reacciones con proteinas de azúcares y en zumos de frutas el propilénglicol alginato para mantener en suspensión la pulpa y darle sabor dulce. En helados para retardar la cristalización. Como formador de geles: En brillantinas, postres lácteos, unguentos, alimentos de dieta.
11
Polisacáridos de las algas Alginatos
El hilo de alginato cálcico es hemostático y absorbible Para películas finas formadas por aerosoles: En la aplicación de insecticidas y herbicidas . En envolturas degradables. En la industria del papel para alisarlo y retardar la penetración de aceites y grasas Para fabricar tabletas con mezclas de algiunatos soluble e insoluble en agua para proteger la tableta seca y como dosificación del medicamento.
12
Polisacáridos de las algas Ácido algínico
b-(1-4) D-manurónico En algunos también cadenas de ácido D-glucurónico Después de lavar con agua las algas e insolubilizar las proteínas con formol se extrae el ácido con disolución de carbonato sódico. Se decolora la disolución y se precipita con HCl
13
Polisacáridos de las algas
Agar Ácido algínico Carragenanos Laminarano
14
Polisacáridos de las algas
Carragenanos Presente en las algas rojas (Chondrus y Gigarina) Polisacárido sulfatado En inmovilización de bacterias Espesante, dispersante y emulgente Igual extracción que el agar
15
Polisacáridos de las algas Carragenanos
Unidad de trisacárido que se repite Dos unidades D-galactopiranosil sulfatadas en C-4 y una 3,6-anhidro-D-galactopiranosil En algunos carragenatos falta la unidad 3,6-anhidro
16
Polisacáridos de las algas
Agar Ácido algínico Carragenanos Laminarano
17
Polisacáridos de las algas
Laminarano Presente en las algas pardas (Laminaria) Principal reserva de polisacáridos de algas Algunas contienen D-manitol en ramificaciones Polisacárido lineal soluble en agua Tipos ramificados insolubles
18
Polisacáridos de las algas Laminarano
Glucana formada por unidades b –D-glucopiranosilo con algunas ramificaciones en C-6. Cadenas 7 a 11 unidades Tamaño medio unas 30 unidades Unidades(1’6)-b-D-glucopiranosilo Unidades(1’3)-b-D-glucopiranosilo
19
Polisacáridos Polisacáridos de las plantas Polisacáridos de las algas
Polisacáridos de las bacterias Polisacáridos de los hongos Polisacáridos de los animales
20
Polisacáridos de las bacterias
Localización Péptidoglicanos Ácidos teicoicos Lipopolisacáridos Polisacáridos capsulares Polisacáridos extracelulares
21
Polisacáridos de las bacterias
Localización en las bacterias Polisacáridos de las paredes celulares Polisacáridos extracelulares (segregados al medio de cultivo) Polisacáridos intracelulares Se clasifican por el lugar donde se localizan y a veces por el nombre de la bacteria donde se encuentran
22
Polisacáridos de las bacterias
Localización en las paredes bacterianas Los polisacáridos de la paredes celulares se clasifican en dos grandes grupos: De las bacterias Gram-positivas - De las bacterias Gram-negativas Paredes celulares de las bacterias Gram-positivas - Polisacáridos Los de las paredes de Gram positivas son mucho más simples, fundamentalmente peptido glucanas (responsables de la rigidez de las paredes) con otros heteropolisacáridos unidos covalentemente y que incluyen ácidos teicoicos. Pared - Ácidos Teicoicos - Peptidoglucanas Citoplasma Membrana citoplasmática
23
Polisacáridos de las bacterias
Localización en las paredes bacterianas Paredes celulares de las bacterias Gram-negativas - Lipopolisacáridos - Fosfolípidos Membrana exterior - Lipoproteina - Proteina Peptidoglicanas Citoplasma Los de las paredes de Gram negativas son mucho más complejos . Una capa fina de peptidoglicanas está dentro de un sadwich entre la membrana exterior que actúa de barrera frente a algunos antibióticos(Resistencoia de algunas bacterias Gram negativas a los antibióticos) y la membrana citoplasmática Membrana citoplasmática Una característica típica de los polisacáridos de las bacterias es que contienen los monosacáridos menos comunes como los mono y di deoxi- azúcares, aminodideoxi-, diamino-trideoxi- y ácidos aminourónicos
24
Polisacáridos de las bacterias
Localización Péptidoglicanos Ácidos teicoicos Lipopolisacáridos Polisacáridos capsulares Polisacáridos extracelulares
25
Polisacáridos de las bacterias
Péptidoglicanos Mureina –Paredes celulares Mureina -Cadenas largas de amino azúcar unidas cruzadamente por cadenas cortas de aminoácidos. En bacterias gram-positivas el 75 a 40 % del peso seco dela membrana y en Gram-negativas del 5 al 10 % Identificados más de 60 tipos diferentes
26
Polisacáridos de las bacterias
Péptidoglicanos Mureina Las cadenas largas están formadas por unidades alternadas de: Unidades de ácido 2-acetamido-2-doxi-murámico Unidades de 2-acetamido-2-deoxi-D-glucosa Unidades de N-acetil-glucosamina Unidades de 2-acetamido—3-O-(1-carboximetil)-2-deoxi-D-glucosa
27
Polisacáridos de las bacterias
Péptidoglicanos Mureina Las cadenas largas están formadas por unidades alternadas de: MurNAc = Unidades de ácido acetil-murámico b-D-GlcpNAc = Unidades de N-acetil-glucosamina Unión –b-(1’4) entre unidades
28
Polisacáridos de las bacterias
Péptidoglicanos Mureina MurNAc = Unidades de ácido acetil-murámico b-D-GlcpNAc = La acción bacteriostática de la penicilina se debe a que inhibe la biosíntesis de la mureina Unidades de N-acetil-glucosamina ’4 unidades de aminoácidos
29
Polisacáridos de las bacterias
Péptidoglicano de Stafilococus Aureus Mureina b-D-glcpNAc h 1 4 MurNAc ’L-Ala’ D-Glu’NH2 L-Lis’ D-Ala’Gly-- i --Gly’ Gly’Gly- También análogos con unidades n-ACETIL-manosamina Y EL MURÁMICO ANÁLOGO DE MANOSA
30
Polisacáridos de las bacterias
Localización Péptidoglicanos Ácidos teicoicos Lipopolisacáridos Polisacáridos capsulares Polisacáridos extracelulares
31
Polisacáridos de las bacterias Ácidos teicoicos
Polímeros fosfatados de las membranas de las bacterias Gram-positivas Los más conocidos. Fosfato –glicerol o ribitol También fosfatos de monosacáridos ó oligosacáridos Constituidos de dos partes: - la cadena principal del polímero -La zona de unión del ácido a un peptidoglicano
32
Polisacáridos de las bacterias Ácidos teicoicos
Ácidos 1,5-Poli(ribitol fosfato) teicoicos Presentes en membranas de lactobacilos y estafilococos R= a-D-glcpNAc 1’ R= b-D-glcpNAc 1’ R= b-D-glcp 1’ Contienen restos alanina unidos via O-2 del ribitol
33
Polisacáridos de las bacterias Ácidos teicoicos
Ácidos Poli(glicerol fosfato) teicoicos Más abundantes que los de glicerol Presentes en membranas de varias especies de bacterias R= a-D-glcpNAc 1’ R= b-D-glcpNAc 1’ R= b-D-glcp 1’ R= a-D-galpNAc 1’
34
Polisacáridos de las bacterias Resto de cadena de ácido teicoico
Ácidos teicoicos La unión de los ácidos teicoicos a las peptidoglicanas de las membranas celulares es vía di-ester fosfórico a los restos ácido murámico Resto de cadena de ácido teicoico
35
Polisacáridos de las bacterias
Localización Péptidoglicanos Ácidos teicoicos Lipopolisacáridos Polisacáridos capsulares Polisacáridos extracelulares
36
Polisacáridos de las bacterias Lipopolisacáridos
Son los principales constituyentes de la envoltura externa de las células y casi los únicos en las bacterias Gram-negativas Estos heteropolisacáridos complejos no están unidos covalentemente a las peptidoglicanas de la membrana Pueden extraerse sin degradación con fenol ó 2-propanol En los glicolípidos reside la toxicidad y la acción patóigena de las bacterias patógenas Están implicados en la respuesta inmunológica a las infecciones naturales y pueden ser vacunas potenciales alternativas a las vacunas de polisacáridos purificados
37
Polisacáridos de las bacterias
Lipopolisacáridos Su estructura puede dividirse en cuatro partes: Cadenas de polisacáridos antigénicos Oligosacárido Región corazón Región vertebral L- a-D-Hepp 1’ 5 KDO 2’ 7 ó 8 5 h 2 D-GlcpNAc-LipidA 2’3 Región lipídica A En los glicolípidos reside la toxicidad y la acción patóigena de las bacterias patógenas
38
Polisacáridos de las bacterias R=ácido de cadena larga
Lipopolisacáridos D-GlcpNAc-LipidA 2’3 Región lipídica A R=ácido de cadena larga Vertebral L- a-D-Hepp 5 h 1 KDO 2’ 7 ó 8 5 h 2 2’ R= Ácido láurico, mirístico, palmítico etc.
39
Polisacáridos de las bacterias
Región vertebral L- a-D-Hepp 1’ 5 KDO 2’ 7 ó 8 5 h 2 2’3 Lipopolisacáridos KDO También para la heptosa isómeros de D-galacto, y D-gulo L- a-D-Hepp Ácido3-deoxi-b-D-mano-octopiranulosonico L-glicero-b-D-mano-heptopiranosa
40
Polisacáridos de las bacterias
Lipopolisacáridos Oligosacárido Región corazón No tienen actividad antigénica Oligosacárido de diferentes composiciones: b-D-glcp b-D-galp a-D-glcpNAc b-D-glcpNAc Constituido por D-glucosa, D-galactosa y 2-deoxi-2acetamido-D-glucosa principalmente Y también: L- a-D-Hepp KDO
41
Polisacáridos de las bacterias
Lipopolisacáridos Oligosacárido Región corazón Ejemplo: Neisseria meningitidis: b-D-galpNAc b-D-glcp L- a-D-Hepp 3 h 1 KDO 1’ 4 2 h 1 a-D-glcpNAc 1’ 3 1’ 5 Constituido por D-glucosa, D-galactosa y2-deoxi-2acetamido-D-glucosa No tienen actividad antigénica
42
Polisacáridos de las bacterias
Lipopolisacáridos Oligosacárido Región corazón Ejemplo: Salmonella Tiphimurium: a-D-galp L- a-D-Hepp 3 h 1 1’ 5 2 h 1 a-D-glcpNAc 1’ 2 a-D-glcp 1’3 1’ 3 Fosfato KDO Constituido por D-glucosa, D-galactosa y2-deoxi-2acetamido-D-glucosa No tienen actividad antigénica
43
Polisacáridos de las bacterias Lipopolisacáridos
Cadenas de polisacáridos antigénicos Unidos a la estructura corazón Estructuras muy complejas con más de un tipo de cadena de polisacárido La estructura de esta región (antigénica) se ha utilizado para la subclasificación de las diferentes especies de bacterias Gram-negativas en quimiotipos. Los diferentes quimiotipos se han utilizado para producir antisueros los cuales a su vez se han utilizado en el análisis estructural de estos polisacáridos.
44
Polisacáridos de las bacterias Cadenas de polisacáridos antigénicos
Lipopolisacáridos Cadenas de polisacáridos antigénicos La base estructural de las reacciones de los sueros puede verse en el ejemplo siguiente: Los polisacáridos ácidos de la Klebsiella aerogens y Enterobacter 349 reaccionan cruzadamente en un 50% con los antisueros del polisacárido opuesto. El análisis estructural muestra que ambos polisacáridos tienen residuos D-galactopiranosilo unidos 1’3 y D-manopiranosilo unidos 1’3 y 1’4
45
Polisacáridos de las bacterias Lipopolisacáridos
Cadenas de polisacáridos antigénicos La diferencia estructural es: El polisacárido de la Klebsiella aerogens contiene restos D-manopiranosilo formando un disacárido que se repite con unidades de ácido D-manopiranosilurónico. Mientras que en el polisacárido de Enterobacter 349 las unidades de disacárido que se repiten son restos D-manopiranosilo unidos a ácido D-galacturónico y D-glucurónico
46
Polisacáridos de las bacterias
Localización Péptidoglicanos Ácidos teicoicos Lipopolisacáridos Polisacáridos capsulares Polisacáridos extracelulares
47
Polisacáridos de las bacterias
Polisacáridos capsulares Polisacáridos que recubren las paredes de las bacterias Gram-positivas Estos polisacáridos complejos contienen aminoazúcares(glucosamina) Frecuentemente tienen actividad antigénica Los polisacáridos extraídos de streptococcus pneumoniae fueron los primeros materiales no proteicos en que se encontró actividad antigénica
48
Polisacáridos de las bacterias Polisacáridos capsulares
Los polisacáridos más simples son los de pneumococos tipo 3 que tienen estructuras como: 1’ b-D-glcp ’3 1’ 4 b-D-glcpA Y los polisacáridos de pneumococos tipo14 que tienen estructuras como: b-D-galp 4 h 1 b-D-glcpNAc ’ 6 b-D-glcp 1’ 3 1’ 4 1’ La mayor parte tienen como estos cadenas de di a hepta sacáridos que se repiten.
49
Polisacáridos de las bacterias Polisacáridos capsulares
Mientras que pocos tienen estructuras complejas como la del pòlisacárido de Klebsiella del serotipo K50 b-D-galp 2 h 1 a-D-glcp ’3 1’ 4 a-D-glcpA a-D-manp 1’ 3 1’ 6 h 1 1’ 6
50
Polisacáridos de las bacterias
Localización Péptidoglicanos Ácidos teicoicos Lipopolisacáridos Polisacáridos capsulares Polisacáridos extracelulares
51
Polisacáridos de las bacterias
Polisacáridos extracelulares Polisacáridos que segregan las bacterias al medio de cultivo Estos polisacáridos son similares a los de las plantas y algas Entre otros son del tipo celulosas, levanas y ácidos algínicos De utilidad en industria alimentaria y como gelificantes Diferencias como por ejemplo: Las levanas extracelulares tienen mayores pesos moleculares (=106). Los ácidos algínicos están en parte acetilados etc.
52
Polisacáridos de las bacterias Polisacáridos extracelulares
Dextranos y a-D-glucanos relacionados Goma de xantano Curdlano Otros heteroglicanos
53
Polisacáridos de las bacterias
Polisacáridos extracelulares Dextranos y a-D-glucanos relacionados Polímeros isomaltosa rara vez lineales Ramificaciones 1’3 en el dextrano de Leuconostoc mesenteroides También aunque menos frecuente, ramificaciones 1’2 o 1’4 a-D-glucanos son principalmente cadenas lineales isomaltosa a- (1’6) con cadenas de laminariobiosa a- (1’3) en las ramificaciones
54
Polisacáridos de las bacterias
2 h 1 b-D-manp b-D-glcp ’4 1’ 4 a-D-glcpA a-D-manp6Ac 1’ CH3-C-COOH 3 h 1 4 h 1 6 4 Polisacáridos extracelulares Goma de xantano Polímeros de glucosa con cadena lineal como celulosa b-(1’4) con ramificaciones a-(1’3) de trisacárido de manosa y ácido glucurónico y algunos extremos manosa como acetal de pirúvico. Producida por varios tipos de Xantamonas
55
Polisacáridos de las bacterias
Polisacáridos extracelulares Curdlano ’3 b-D-glcp 1’ 3 b-D-glcp 1’ 3 b-D-glcp 1’ 6 b-D-glcp 1’ Producida por Alcaligenes faecalis var myxogenes Pocos Estructura en hélice y grado de polimerización =450 Polisacárido Erwinia Tahitica Otros heteroglicanos D-glcp D-galp L-fuc D-glcpA En la relación 6:4:2:3 Contiene un 4,5 % de acetilo
56
Polisacáridos Polisacáridos de las plantas Polisacáridos de las algas
Polisacáridos de las bacterias Polisacáridos de los hongos Polisacáridos de los animales
57
Polisacáridos de los hongos
D-glucanas Pullulana Elsinana Scleroglucana D-galactanas D-mananas
58
Polisacáridos de los hongos
D-glucanas Pullulana Producida por Aureobasidium pullulans formalmente conocido como Pullularia pullulans Polisacárido lineal formado por Maltotriosas unidas por uniones isomaltosa Las variaciones estructurales consisten en cambiar algunos enlaces 1’6 por 1’3 y unidades maltotriosa por unidades maltotetraosa A pesar de su similitud con amilosa la a-amilasa poca acción sobre este polisacárido pues al ser lineal rápidamente llega a un enlace 1’6 y se detiene la hidrólisis
59
Polisacáridos de los hongos Producida por Elsinae leucospila
D-glucanas Elsinana Producida por Elsinae leucospila Polisacárido ramificado formado por Maltotriosas y alguna maltotetraosas unidas por uniones 1’3 Las ramificaciones en glucosas sustituidas 1,3,6 cada 140 residuos aproximadamente Se degrada por a-amilasa más que pullulana pero mucho menos que amilosa
60
Polisacáridos de los hongos
D-glucanas Scleroglucana Grupo de gomas producidas por hongos del género Sclerotium y también por especies de los géneros Corticium, Sclerotinia y Stromatinia Polisacárido ramificado formado por uniones Nigerosa b-(1’3) con ramificaciones genciobiosa b-(1’6) Grados de polimerización entre 500 y 1600 unidades. Y la comercial de 800
61
Polisacáridos de los hongos
D-glucanas Pullulana Elsinana Scleroglucana D-galactanas D-mananas
62
Polisacáridos de los hongos
D-galactanas Galactocorolosa Poca importancia industrial pero muchas variedades polímeros de Galactosa. La Galactocorolosa se obtiene de Penicillium charlesii Polisacárido lineal de bajo tamaño (unas 10 unidades) de galactofuranosas unidas b-(1’5)
63
Polisacáridos de los hongos
D-mananas Una manana a-(1’6) es la de Saccharomyces rouxii Una manana a-(1’2) es la de Saccharomyces cerevisiae que tiene la estructura: a-D-manp 1’ 3 1’ Ortofosfato 1’ 2 ’
64
Polisacáridos Polisacáridos de las plantas Polisacáridos de las algas
Polisacáridos de las bacterias Polisacáridos de los hongos Polisacáridos de los animales
65
Polisacáridos de los animales
Glicógeno Quitina y quitosano Condroitina Heparina Hialurónico
66
Polisacáridos de los animales
Glicógeno Almidón de los animales La principal reserva de polisacáridos de los animales Se almacena en músculos y en el hígado de mamíferos cuando hay exceso de glucosa y se hidroliza para mantener los niveles de glucosa en sangre Más ramificado que la amilopectina con un enlace a-(1’6) cada 15 glucosas a-(1’4) y sus pesos moleculares son altos ( de 1 a 1000x106).
67
Polisacáridos de los animales
Glicógeno Estructura muy ramificada
68
Polisacáridos de los animales
Glicógeno Quitina y quitosano Condroitina Heparina Hialurónico
69
Polisacáridos de los animales
Quitina y quitosano Caparazón duro de los crustáceos y de los insectos Unidades N-acetilglucosamina unidas b-(1’4) y como promedio de cada seis unidades una glucosamina sin acetilar Estructura parecida a la celulosa adecuada para tejidos fuertes de sostén El quitosano es el producto de desacetilación de la quitina, soluble en ácido débil precipita a pH=7 formando geles
70
Polisacáridos de los animales 2-acetamido –2-deoxi -b-D-glucopiranosas
Quitina y quitosano uniones b-(1’4) 2-acetamido –2-deoxi -b-D-glucopiranosas
71
Polisacáridos de los animales
Glicógeno Quitina y quitosano Condroitina Heparina Hialurónico
72
Polisacáridos de los animales
Condroitina Sulfatos de condroitina abundan en tejido conjuntivo (materia fundamental y fibras), en la córnea,cartílagos, tendones y huesos. Alternadamente unidades N-acetilgalactosamina unidas b-(1’4) con ácido glucurónico y b-(1’3) con la siguiente galNAc Cada unidad N-acetilgalactosamina lleva un grupo monoester sulfúrico en 6 ó en 4. Cada dos eslabones hay dos cargas negativas (el doble que en ácido hialurónico) que pueden fijar iones Ca2+ en uniones entre cadenas
73
Polisacáridos de los animales Sulfato de Condroitina
-Otro polímero semejante es el sulfato de dermatina que contiene acetil glucosamina y ácido L-idurónico y se encuentra en la piel y válvulas del corazón
74
Polisacáridos de los animales
Glicógeno Quitina y quitosano Condroitina Heparina Hialurónico
75
Polisacáridos de los animales Es un mucopolisacárido de secreción.
Heparina Es un mucopolisacárido de secreción. Se obtiene industrialmente por extracción de pulmones de buey o de intestinos de cerdo. Se segrega en tejidos diversos (higado, pulmones, etc.) inhibe la fibrilación de la sangre y se usa como anticoagulante. Unidades de glucosamina sulfatadas en N(2) y en 6 y unidades de ácido glucurónico sin sulfatar ó idurónico sulfatado en 2 unidas por enlaces a-(1’4).
76
Polisacáridos de los animales
Heparina Los mucoitinsulfatos son semejantes a las condroitinas y forman parte de muchas mucosidades, con unidades acetilglucosamina sulfatadas en 4 ó 6
77
Polisacáridos de los animales
Glicógeno Quitina y quitosano Condroitina Heparina Hialurónico
78
Polisacáridos de los animales
Hialurónico Polisacárido lineal en hélice con cargas negativas que fija mucha agua (como los carragenatos) y da soluciones viscosas y transparentes. En el líquido sinovial es un lubricante de la articulación y en el humor vítreo constituye una lente de foco variable Cadenas más largas del ácido forman parte principal de la sustancia conjuntiva fundamental ó cemento de unión intercelular de órganos y tejidos y también del cordón umbilical Unidades alternadas de acetilglucosamina y ácido glucurónico unidas por enlaces b-(1’4) y b-(1’3) con la siguiente glcNAc.
79
Polisacáridos de los animales
Hialurónico Por ejemplo los anestésicos de los dentistas. Sin embargo los flavonoides de la naranja inhiben esta enzima por lo que protegen el tejido conjuntivo. Interés de cítricos en prevención de infecciones (además del efecto de la vitamina C) La enzima hialuronidasa, hidroliza este polisacárido y hace permeables los tejidos tanto para virus como para moléculas. Algunos medicamentos inyectables van asociados a esta enzima para facilitar su penetración.
80
Carbohidratos Ha finalizado la exposición
Muchas gracias por su atención Pedro Antonio García Ruiz Catedrático de Escuela Universitaria Profesor Titular de Universidad Area Química analítica Area Química Orgánica Departamento de Química Orgásnica - Universidad de Murcia
81
Carbohidratos Introducción Monosacáridos Oligosacáridos Polisacáridos
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.