La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

TEMA 7 MÉTODOS TEÓRICOS DE ESTUDIO DE ESTUDIO ESTRUCTURAL.

Presentaciones similares


Presentación del tema: "TEMA 7 MÉTODOS TEÓRICOS DE ESTUDIO DE ESTUDIO ESTRUCTURAL."— Transcripción de la presentación:

1 TEMA 7 MÉTODOS TEÓRICOS DE ESTUDIO DE ESTUDIO ESTRUCTURAL

2 Características sistemas biológicos (p.v. Teoría) Reacciones y procesos biológicos son en general sencillos Problemas en su representación: –Descripción solo parcial del conjunto de procesos bioquímicos en la célula –Dificultad por el enorme tamaño de las macromoléculas biológicas –Ignoramos en detalle la naturaleza del entorno fisiológico.

3 Métodos estudio estructural de sistemas bioquímicos Métodos estadísticos. –Emplean criterios de comparación. Del análisis de bases de datos derivan reglas de conocimiento que luego aplican al sistema desconocido Métodos físicos o microscópicos. –Emplean principios básicos de la física y química.

4 Métodos estadísticos: Bioinformática estructural

5 Métodos estadísticos (1) Predicción de perfiles de hidrofobicidad, sitios de glicosilación, determinantes antigénicos y otras propiedades primarias derivadas de secuencia. Predicción de funcionalidad por similitud de secuencia. Predicción estructura secundaria (RNA, proteínas,...) Predicción de fragmentos transmembrana. Predicción de dominios estructurales Ver por ejemplo

6 Métodos estadísticos (2) Predicción de estructura 3-D por homología Predicción de estructura 3-D por threading Predicción ab initio a partir de potenciales estadísticos Predicción e identificación de centros activos y lugares de unión. Ver por ejemplo

7 1. Predicción propiedades primarias En muchos casos basados en composición aminoacídica: –Masa molecular, pI, coeficiente extinción, curvas de titración –Perfiles hidrofóbicos. –Regiones de glicosilación, determiantes antigénicos, sensibilidad a degradación proteolítica.

8 2. Predicción funcionalidad por similitud de secuencia Métodos basados en similitud general –BLAST, FASTA,... Métodos basados en existencia de secuencias cortas características –PROSITE

9 ScanProsite Scan Swiss-Prot with a PROSITE pattern Swiss-Prot Release of 29-Aug-2003: entries PDOC00965PDOC00965 PS01253 FIBRONECTIN_1 Type I fibronectin domain. Pattern: C-x(6,8)-[LFY]-x(5)-[FYW]-x-[RK]-x(8,10)-C-x-C- x(6,9)-C Approximate number of expected random pattern matches in Swiss-Prot release 41.0 ( sequences): 0.18 [Ref: PMID ]PS01253PMID >P98140 (FA12_BOVIN) Coagulation factor XII precursor (EC ) (Hageman factor) (HAF) (Fragment) [Bos taurus (Bovine)] (593 AA) CfepqffrfFheneiWhRlepagvvk..CqCkgpnaq...CP98140 Ejemplo output PROSITE-search contra swissprot

10 Accession number or sequence Enter a Swiss-Prot/TrEMBL accession number or a PROTEIN sequence in RAW format. Ejemplo input BLAST Secuencia de la proteína problema

11 Query length: 61 AA Date run: :20:12 UTC+0100 on sib- blast.unil.ch Program: NCBI BLASTP [Nov ] Database: XXtremblnew; XXtrembl; XXswissprot 1,249,251 sequences; 402,609,643 total letters Swiss-Prot Release of 29-Aug-2003 TrEMBL Release of 29-Aug-2003 TrEMBL_new of 29-Aug-2003 List of potentially matching sequences Send selected sequences to Include query sequence Db AC Description Score E-value tr Q8XMW7Q8XMW7 Hypothetical protein CPE0571 [CPE0571] [Clostridium pe e-34 Q8EMU9 Hypothetical conserved protein [OB2741] [Oceanobacillu e-13142Q8EMU9 74 (...) Ejemplo output BLAST Listado de proteínas con similitud

12 Taxonomy reports Distribution of 63 Blast Hits on the Query Sequence Ejemplo alineamientos after Blast

13 >gi| |ref|NP_ | conserved hypothetical protein [Clostridium perfringens] gi| |dbj|BAB | conserved hypothetical protein [Clostridium perfringens str. 13] Length = 135 Score = 113 bits (283), Expect = 7e-25 Identities = 59/61 (96%), Positives = 59/61 (96%), Gaps = 1/61 (1%)gi| |ref|NP_ |gi| |dbj|BAB | Query: 1 MNNFFKHTLETHTAAQSMSKITSYIREDIKNSNIENGIVVVYCPHTTAGITINENADPDV 60 MNNFFKHTLETHT QSMSKITSYIREDIKNSNIENGIVVVYCPHTTAGITINENADPDV Sbjct: 1 MNNFFKHTLETHT-PQSMSKITSYIREDIKNSNIENGIVVVYCPHTTAGITINENADPDV 59 Query: 61 V 61 V Sbjct: 60 V 60 Ejemplo alineamiento en PsiBlast servidor

14 2. Predicción estructura secundaria Se puede predecir cantidad total de estructura secundaria Métodos basados en existencia de secuencias cortas características –PROSITE

15 AGADIR - An algorithm to predict the helical content of peptidesAGADIR BCM PSSP - Baylor College of MedicineBCM PSSP Prof - Cascaded Multiple Classifiers for Secondary Structure PredictionProf GOR I (Garnier et al, 1978) [At PBIL or at SBDS]PBILSBDS GOR II (Gibrat et al, 1987)GOR II GOR IV (Garnier et al, 1996)GOR IV HNN - Hierarchical Neural Network method (Guermeur, 1997)HNN Jpred - A consensus method for protein secondary structure prediction at University of DundeeJpred nnPredict - University of California at San Francisco (UCSF)nnPredict PredictProtein - PHDsec, PHDacc, PHDhtm, PHDtopology, PHDthreader, MaxHom, EvalSec from Columbia UniversityPredictProtein PSA - BioMolecular Engineering Research Center (BMERC) / BostonPSA PSIpred - Various protein structure prediction methods at Brunel UniversityPSIpred SOPM (Geourjon and Deléage, 1994)SOPM SOPMA (Geourjon and Deléage, 1995)SOPMA Ejemplo de programas predicción estructura secundaria

16 Métodos predicción estructura secundaria Definen un número limitado de estructuras secundarias de referencia (hélice, giro, cadena típicamente). Analizan la base de datos de estructura calculando las veces en que cada tipo de residuo se encuentra en una estructura secundaria. De los datos de distribución derivan propensiones Con estas propensiones predicen Est. Sec. De proteínas problema.

17 MODEL F C F C K E H E T E L E E E T E H C T C A C A C (....) Ejemplo de output de un programa de predicción Estructura secundaria

18 Método de Chou-Fasman Tres tipos de E.secundaria:, turn. Se estudia la base de datos se mira cada residuo en que E.secundaria está Se calculan probabilidades Se derivan propensiones tendencia intrínseca de un residuo a pertenecer a una E.secundaria data Se promedian las P obtenidas en ventanas de 5 o 6 residuos para derivar estructura del fragmento

19 Propensiones Chou-Fasman Biochemistry 17, Favor Favor turn

20 Reglas Chou-Fasman (resumidas) Cada secuencia con 6 o mas residuos y 1,03 y y que no tengan Pro son hélices. Fragmentos de 5 residuos o más con 1,05 y será hoja beta Tetrapéptidos con > son posiblemente giros. Las reglas reales son más complejas

21 Métodos predicción fragmentos transmembranas Emplean datos de homología con estructuras transmembranas conocidas Emplean datos de predicción de estructura secundaria Emplean perfiles de hidrofobicidad. Emplean datos sobre la necesidad de existencia de hélice anfipáticas y otras señales más difusas

22 Por ejemplo, si ejecutamos Sosui sobre esta secuencia (Rodopsina) MNGTEGPNFYVPFSNKTGVVRSPFEAPQYYLAEPWQFSMLAAY MFLLIMLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFMVF GGFTTTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAI ERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLVGW SRYIPEGMQCSCGIDYYTPHEETNNESFVIYMFVVHFIIPLIVIFFC YGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWL PYAGVAFYIFTHQGSDFGPIFMTIPAFFAKTSAVYNPVIYIMMNK QFRNCMVTTLCCGKNPLGDDEASTTVSKTETSQVAPA

23 This amino acid sequence is of a MEMBRANE PROTEIN which has 7 transmembrane helices. N o. N terminaltransmembrane regionC terminaltype lengt h 140LAAYMFLLIMLGFPINFLTLYVT62PRIMARY23 271PLNYILLNLAVADLFMVFGGFTT93SECONDARY EGFFATLGGEIALWSLVVLAIER135SECONDARY GVAFTWVMALACAAPPLVGWSRY178SECONDARY MFVVHFIIPLIVIFFCYGQLVFT229PRIMARY FLICWLPYAGVAFYIFTHQGSDF283PRIMARY VYNPVIYIMMNKQFRNCMVTTLC322SECONDARY23

24 Métodos predicción dominios estructurales En general se aplican criterios de homología contra alineamientos múltiples. Normalmente se ejecutan contra bases de datos de alineamientos como PFAM. Incluyen información sobre presencia de determinados motivos estructurales: ej regiones de baja complejidad, transmembranas,... Se pueden emplear técnicas de Threading

25 Q9P201/ Q9P201/ LLLKYSK...KSELWTAQETIVYLGDYLTVKKKGRQRNA.FWVHHLHQ EEILGRYVGKD YKEQKGLWHHFTDVERQMTAQHYVTEFNKRLYEQNIPTQIFYIPSTILLILEDKTIKG.....CISVEPYILGEFVKL SNNTK.....VVKTEYKATEYGLAYGHFSYEFSNHRDVVVDLQGWVTGNGKGLIYLTDPQIHSVD......QKVFTTN FGKRGIFYFFNNQHVECNEIC Q9P201Q9P201 Q9HEI0/ Q9HEI0/ MLDRMME...SDTNMPVSVFGLNLCKRRTPFAKGALRLASFACTECSRS RHVVKEFKTDGD DEDD.GSGNRSLAHLVDDMRSQALCKAFALEFNSLLADC..PEHNIDFVVTSCFKCNDRRGSQ...GKCMSIEPFL AGKFVKYNGNAGYANKEANLTHDPSNQAAQAFSHFTFERSRGRFLVCDLQGVG KTMTDPAIHTLDP...YR FSLSQTNLGAEGFMFFF..AYHECNHLC Q9HEI0KMHA_DICDI/ ILWEFDP...IINKWIRLSMKLKVERK..PFAEGALREA.YHTVSLGVGTDENYPLGTTTKLFPPIEMISPISKNNEA MTQLKNGTKFVLKLYKKEAEQQASRELYFEDVKMQMVCRDWGNKFNQKK.....PPKKIEFLMSWVVELIDRS PSSNGQPILCSIEPLLVGEFKKNNSNYG......AVLT.N.RSTPQAFSHFTYELSNKQMIVVDIQGVD DLYTDPQI HTPD.....GKGFGLGNLGKAGINKFI..TTHKCNAVC P42527O76739/ IKWELTIGDDLKPKWTHSIVCVSIEKT..PFAKGSCRTA.HKLKDWSQP DQGLVGKFST...NK KTTRDSYFTDVLMQTFCAKWAEKFNEAK.....PPKPITFLPSYVYELIDHPPP....YPVCGGEPFIEGDYKKHNNNS G......YVSS.DARNTPQSFSHFSYELSNHELLIVDIQGVN DFYTDPQIHTKS.....GEGFGEGNLGETGFHKFL.. QTHKCNPVC O76739KMHB_DICDI/ IKWEYDP.YTTTAQWTCTATLVKVEPV..PFAEGAFRKA.YHTLDLSK SGASGRYVSKIGK KPTPRPSYFEDVKMQMIAKKWADKYNSFK.....PPKKIEFLQSCVLEFVDRTSS....DLICGAEPYVEGQYRKYNN NSG......FVSN.DERNTPQSFSHFTYEHSNHQLLIIDIQGVG DHYTDPQIHTYD.....GVGFGIGNLGQKGFEKF L..DTHKCNAIC P90648EF2K_RAT/ TRHRYNA...VTGEWLKDEVLIKMASQ..PFGRGAMREC.FRTKKLSN FLHAQHWKGASNYV AKRYLEPVDRSVYFEDVQLQMEAKLWGEEYNRHK.....PPKQVDIMQMCIIELKDRQGQ.....PLFHLEHYIEGK YIKYNSNSG......FVRDDNIRLTPQAFSHFTFERSGHQLIVVDIQGVG DLYTDPQIHTEK.....GTDFGDGNLGV RGMALFF..YSHACNRIC P70531Q9HEI0KMHA_DICDI/ P42527O76739/34-235O76739KMHB_DICDI/ P90648EF2K_RAT/ P70531 Ejemplo familia PFAM ( -kinases)

26 Modelado de proteínas por homología Técnicas muy poderosas cuando existe una fuerte identidad de secuencia entre la proteína problema y otra de estructura conocida. Es una técnica sencilla, implementada en programas automáticos/semiautomáticos como SWISMODEL o MODELLER

27 Modelado de proteínas por homología Alineamiento de la proteína problema con una o varias estructuras de proteínas de estructura conocida. Se sobreponen las cadenas principales de la proteína problema y de la proteína(s) de referencia. Se satisfacen los criterios de mantenimiento de la topología de enlace de la proteína Se orientan en lo posible las cadenas laterales (Cb) según la proteína de referencia. Se relajan las cadenas laterales y se optimiza parcialmente el conjunto Se valida el sistema

28 Identificación homólogos Alineamiento Determinación restricciones Construcción modelo Refinado Validación Etapas generales modelado por homología

29 Modelado de proteínas por homología (problemas) Los modelos no suelen tener la misma calidad en las cadenas laterales que en la cadena principal. Cuando la identidad de secuencia baja por debajo del 30% entramos en una zona (twilight-zone) donde está poco clara la calidad del modelo. Cuando bajamos del 20% de identidad la técnica no es aplicable. Solo es fiable cuando se aplica a nivel de dominio. Proteínas con varios dominios no son modeladas con fiabilidad.

30 Métodos de Threading Métodos sirven para obtener modelos estructurales cuando identidad con modelos de estructura conocida es baja. Se usan también para recuperar proteínas con función similar a pesar de tener baja homología de secuencia Métodos arriesgados (última opción), funcionan solo a nivel de dominio

31 Métodos de threading: evolución base de datos de estructura

32 Métodos de Threading(2) Intentan adaptar la secuencia de la proteína a plegamientos (folds) de referencia Emplea tipos de folds canónicos (SCOP, CATH). Se evalua la estabilidad de cada uno de los folds teóricos en los que se ha plegado la proteína Se escoge el de mayor puntuación. En muchos casos se emplean meta-servers que conectan con diferentes servidores de predicción y realizan evaluación promedio (www.bioinfo.pl o

33

34 Jerarquía SCOP 1.Familia. Clara relación evolutiva 2.Superfamilia. Probable origen evolutivo común 3.Plegamiento. Fuerte homología estructural

35 Class Number of folds Number of superfamilies Number of families All alpha proteins All beta proteins Alpha and beta proteins (a/b) Alpha and beta proteins (a+b) Multi-domain proteins28 35 Membrane and cell surface proteins Small proteins Total Plegamientos en SCOP

36 BASE DATOS CATH

37 Jerarquía CATH C: Clase (contenido en estructura secundaria) A: Arquitectura (disposición de los elementos de estructura secundaria) T: Topología (disposición de las conexiones entre elementos) H: Homología (homología estructural) S: Secuencia (homología de secuencia)

38 Ejemplo de clasificación CATH

39 Métodos de plegamiento ab initio Intentan plegar proteínas pequeñas a partir de potenciales estadísticos, sin recurrir a priori al conocimiento previo del plegamiento de proteínas similares Emplean métodos muy sencillos de muestreo del espacio conformacional de las proteínas Muy poco precisos. Aplicables solo a proteínas pequeñas.

40 Potenciales estadísticos Priman la posición (externa / interna) de residuos aminoacídicos Pueden primar tendencia a estar en E. Secundaria de un tipo Representan la tendencia diferencial de residuos a estar cerca o lejos en el espacio Se también usan para evaluar estabilidad de proteínas ya plegadas

41 Ejemplo perfil PROSA Total Hidrophobic C -C Very stable Low stability

42 Métodos microscópicos

43 Métodos microscópicos/físicos: Metodos de simulación molecular Pretenden reproducir sistemas bioquímicos a partir de principios fisicoquímicos. Se pueden basar en dos esquemas diferentes. –Mecánica cuántica –Mecánica clásica

44 Mecánica cuántica Basada en primeros principios. E=E(X,x) Muy rigurosa Uso universal Demasiado costosa computacionalmente Poco aplicable en sistemas bioquímicos

45 Mecánica clásica E=E(X) Utiliza aproximaciones empíricas a la energía Muy eficiente computacionalmente Menos precisa que la Mec. Cuántica Aplicable solo a sistemas sin cambio de topología y sin efectos cuánticos

46 Ejemplo: Un enlace químico

47

48 Cerca del equilibrio,...

49 El force-field Bonded-terms Non bonded-terms Other restrains

50 Force-field Stretchings Bendings

51 Torsión

52

53 Torsión: en general se representa como:

54 Términos de no-enlace Interacciones entre átomos no enlazados ni formando un ángulo –Término electrostático –Término de van der Waals

55 Término electrostático

56 Término de van der Waals

57 Sirve para simular las interacciones estéricas (repulsivas y atractivas) Evita fusión nuclear entre átomos con cargas opuestas

58 Parametrización A partir de datos mecanocuánticos A partir de datos experimentales Mixta Proceso lento y difícil pero clave Stretching-Bending (QM, IR, Raman, X- ray, microondas) Torsiones (QM, NMR) Electrostático (QM, fase condensada) Van der Waals (X- ray, fase condensada)

59 Parametrización con datos fases condensadas Parámetros iniciales Simulación MD, MC OK? Cálculo propiedades Modificar parámetros END

60 Pros and Cont Mec. Clásica Rapidez, i.e. Posibilidad de tratar sistemas realistas Si el force-field es correcto los resultados también lo son Resultados dependen del force-field. No aplicable a reacciones químicas. No aplicable cuando el comportamiento cuántico del sistema es relevante.

61 Métodos que emplean Mec. Clásica Mecánica molecular: –Su objetivo es encontrar la disposición espacial de los núcleos más estable. Dinámica molecular: –Su objetivo es determinar el movimiento interno de una molécula a lo largo del tiempo

62 Algoritmo general de MM Epot g= Epot/x Algoritmo de búsqueda {x} 0 Nuevo conjunto {x} 1 Convergido? Final SI NO

63 Pro y Cont. MM Rápida y económica computacionalmente Suele ser etapa previa a un cálculo más complejo. Da visión estática del sistema. En sistemas grandes el resultado depende de la conformación inicial

64 Dinámica Molecular (MD) Obtener visiones promediadas de un sistema (Boltzmans sampling). Obtener muestreo de transiciones temporales. Estudiar cambios en un sistema inducido por perturbaciones externas Mejorar geometría de un sistema. Obtener la termodinámica de un sistema y sus interacciones. Ayudar en el refinado de estructuras a partir de restricciones X-Ray o NMR.

65 Dinámica molecular Epot {x i } F i = -Epot/x i a i = F i /m i v i (t+dt)=v(t) i +a i dt x i (t+dt)=x(t) i +v i dt Trayectoria

66 Pros, cont MD Técnica muy potente para obtener visiones de un sistema clásico. La etapa de integración es pequeña (1 fs) muy difícil estudiar escalas temporales grandes


Descargar ppt "TEMA 7 MÉTODOS TEÓRICOS DE ESTUDIO DE ESTUDIO ESTRUCTURAL."

Presentaciones similares


Anuncios Google