La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

MATEMÁTICAS Y CINE Marta Martín Sierra Facultad de Matemáticas de la Universidad de Oviedo Abel Martín IES Pérez de Ayala de Oviedo.

Presentaciones similares


Presentación del tema: "MATEMÁTICAS Y CINE Marta Martín Sierra Facultad de Matemáticas de la Universidad de Oviedo Abel Martín IES Pérez de Ayala de Oviedo."— Transcripción de la presentación:

1 MATEMÁTICAS Y CINE Marta Martín Sierra Facultad de Matemáticas de la Universidad de Oviedo Abel Martín IES Pérez de Ayala de Oviedo

2 Nuestros momentos de ocio, en una sociedad cada vez más tecnificada, están ocupados por los amigos, el deporte, la música, el ordenador … y en gran medida por el CINE, con increíbles efectos visuales, argumentos atractivos, superproducciones de más o menos presupuesto, que intentan atraer al espectador, acompañadas de una gran dosis de publicidad, que hace que las carteleras vía Internet sean uno de los lugares más visitados. Por otro lado vamos a hablar de las MATEMÁTICAS. Uno de sus objetivos fundamentales, ya desde la edad más temprana, es hacer comprender que todo lo que nos rodea está impregnado de ellas. Frases como "el Universo está controlado por los números" quedan pequeñas si miramos a nuestro entorno, "nuestra vida cotidiana no tendría sentido sin las Matemáticas". Matemáticas y Cine INTRODUCCIÓN

3 Fomentar el gusto por las Matemáticas a través del CINE, aprovechando su prestigio entre todos y, sobre todo, entre los adolescentes. Provocar el gusto por la búsqueda de Matemáticas en el desarrollo de la película tanto implícitas como explícitas. Aprender a reflexionar críticamente sobre situaciones planteadas en la vida cotidiana, representada en este caso en el cine. Popularizar y divulgar las Matemáticas. Matemáticas y Cine OBJETIVOS

4 Investigación bibliográfica navegando por Internet. Recopilación y posterior visionado de las películas sugeridas. Creación de un banco de "copias de seguridad" con las películas seleccionadas. Diseño de fichas en las que señalamos una breve reseña técnica, sinopsis, curiosidades y escenas seleccionadas de contenido matemático (indicando el tiempo de comienzo y final), con diálogos, fotografías, banda sonora y, en algunos casos, enlaces para ver videos con escenas significativas o trailers. Aportaciones propias e inéditas en filmes, fruto de nuestra propia observación particular. Realización de diapositivas muy sencillas Diseño de una página Web, con todos los materiales disponibles. Matemáticas y Cine METODOLOGÍA

5 UNA MENTE MARAVILLOSA (2001) Como siempre se nos va a presentar al protagonista, un matemático, con el estereotipo habitual, un chiflado, que llega incluso a la esquizofrenia. Sus trabajos son secundarios en el desarrollo del film. Escena: 2h: 00:00 - 2h: 02:24 Cuando finalmente logra el autodominio y el premio Nóbel, en la ceremonia de concesión de éste dice desde el estrado: - Siempre he creído en los números, en las ecuaciones y la lógica que llevan a la razón. Pero después de una vida de búsqueda me digo, ¿qué es la lógica?, ¿quién decide la razón? He buscado a través de lo físico, lo metafísico, lo delirante... y vuelta a empezar y he hecho el descubrimiento más importante de mi carrera, el más importante de mi vida: sólo en las misteriosas ecuaciones del amor puede encontrarse alguna lógica. Estoy aquí esta noche gracias a ti... – le dice a su esposa.

6 GALILEO GALILEI (1974) Sobre la vida de Galileo, sus teorías y descubrimientos, realizada por Joseph Losey a partir de la obra teatral "Vida de Galileo" de Bertolt Brecht. Escena: 0:49:41 - 0:51:42 - El Santo Oficio ha decidido que la teoría de Copérnico que La Tierra gira alrededor del Sol es falsa, absurda y herética. Se me ha encargado, señor Galilei, que le exhorte a renunciar a esta opinión. - ¿Qué quieren decir? El Colegium Romanum ha confirmado mis observaciones... los satélites de Júpiter, las fases de Venus... - No se han tenido en cuenta esos detalles en particular. La Ciencia es hija legítima y muy amada de la Iglesia y deba confiar en la Iglesia -comenta el cardenal. Son momentos en los que Galileo comenta a sus discípulos: - ¡Debes de aprender a pensar con más prudencia!. No puedo permitirme que me asen en una hoguera, como un jamón. Matemáticas y Cine

7 LA VERDAD OCULTA (2006) Catherine, mujer matemática que se ve cuestionada como autora de un teorema, se plantea cuál habrá sido su herencia genética, la locura o la genialidad de su padre. En Matemáticas, para demostrar las hipótesis hace falta una prueba, pero si a la exactitud de las ciencias añadimos la incertidumbre de las relaciones personales, los resultados ya cambian y no existen los axiomas. Escena: 1:13:00 - 1:17:30 - ¡Es correcta!. Creí que te gustaría saberlo. - afirma Hal - Ya tienes el cuaderno. Me ha dicho que te lo dio, así que haz lo que quieras con él. Publícalo, organiza una rueda de prensa, cuéntale al mundo lo que mi padre descubrió. - replica Catherine - ¡No creo que lo hiciera él!. - ¡Antes sí lo creías!. - Eso era la semana pasada. He estado estudiándolo y creo que ya lo he entendido. Se usan técnicas matemáticas nuevas desarrolladas en los 80 y en los 90, geometría no conmutativa, matrices aleatorias. He aprendido más matemáticas esta semana que en los 3 años de doctorado. La demostración es muy moderna. No creo que tu padre pudiese dominar todas esas técnicas. Matemáticas y Cine

8 PI, FE EN EL CAOS (1998) Trata sobre de las relaciones de un matemático desequilibrado con el medio que le rodea y su progresiva e irremediable obsesión con la teoría de los números. Escena: 0:03:00 - 0:04:28 - Las matemáticas son el lenguaje de la naturaleza. - Todo lo que nos rodea se puede representar y entender mediante números. - Si se hace un gráfico con los números de un sistema se forman modelos. Estos modelos están por todas partes en la naturaleza... veremos emerger patrones. - ¿Y la bolsa? Una infinidad de números que representa la economía global. Millones de manos trabajando, millones de mentes. Una red inmensa llena de vida. Un organismo. Un organismo natural. Max descubre y relaciona el número que mueve la existencia de todo ser vivo: es el número Pi. Matemáticas y Cine

9 MOEBIUS (1995) Plantea una situación inexplicable, con trasfondo matemático y metáfora filosófica incluida, aunque en este caso no hay Matemáticas explícitas, sólo referencias a la banda de Moebius y a alguna de sus propiedades. Escena: 0:49:16 - 0:57:11 - Este tren, en algún punto de su recorrido, se esfumó. Dio con un nodo, que en el campo de la topología, es una particularidad, un polo de orden superior. El sistema perimetral es una red de asombrosa complejidad topológica, llevando a la conectividad de todo el sistema a un orden tal alto que no sé cómo calcularlo, supongo que ha llegado a ser infinito. De ser así podríamos decir que el sistema se comporta como una cinta de Moebius - Comenta, mientras describe cómo se construye una cinta de Moebius. Matemáticas y Cine

10 Una forma de representar la banda de Moebius (cerrada y con frontera) como un subconjunto de R 3 es mediante la parametrización: x(u,v) = [1 + (v/2) cos (u/2)]· cos u y(u,v) = [1 + (v/2) cos (u/2)]· sen u z(u,v) = (v/2) sin (u/2)

11 MOEBIUS (1995) Otra forma de representar la banda de Moebius (cerrada y con frontera) como un subconjunto de R 3 es mediante la parametrización: x = cos u + v cos (u/2)· cos u y = sen u + v cos (u/2)· sen u z = v sin (u/2)

12 EL GENIO DEL AMOR (1994) La sobrina de Albert Einstein, una brillante matemática, es una de las protagonistas. Escena: 0:07:50 - 0:09:06 - El principio de incertidumbre postula un universo caótico donde todo sucede por mera casualidad. Por mi parte yo nunca creeré que Dios juega a los dados con el Universo. -comenta Einstein a unos colegas. Escena: 0:28:41 - 0:29:02 - ¿Usted es Albert Einstein?. E = m·c 2. -Pregunta un amigo mecánico - ¡Eso espero! -contesta el científico. Matemáticas y Cine

13 PRESUNTO INOCENTE (1990) Su relación con las Matemáticas se circunscribe a la aparición de la versión femenina del estereotipo del matemático, que a diferencia de las mayoría es inicialmente de un aspecto sosegado y tranquilo, en forma de abnegada y fiel ama de casa, que a pesar de tener un brillante expediente académico, se mantiene alejada de una de sus ilusiones: ser profesora de Universidad, por otra gran ilusión que es su familia. Escena: 0:23:39 - 0:24:40 - ¿Qué tal te ha ido? -Pregunta Sabich a su esposa. - Bien. Resulta que me he dado cuenta que esta semana hace 10 años que estoy trabajando en esa tesis doctoral y he pensado que podríamos celebrarlo. ¿Nos invitas a cenar?. - ¿Por qué no te olvidas de esa tesis? - pregunta el niño- ¡Te pone de mal humor!. - Tu madre no se rinde nunca, termina todo lo que empieza. - ¿Quizá ese sea el problema?. - Yo no estudiaría matemáticas si no me obligaran - afirma el hijo. - En lo de las matemáticas has salido a mí. Si no fuera por tu madre aún estudiaría Álgebra. Matemáticas y Cine

14 CONTACT (1997) La protagonista desde niña presentaba una predisposición innata hacia las Ciencias y las Matemáticas. Ya adulta logra comunicarse con seres extraterrestres a través de los números primos porque las Matemáticas son, según ella, el único idioma universal Escena: 0:42:00 - 0:44:00 Tras un gran revuelo acuden televisiones, ejército, altos cargos del Gobierno, de la CIA y del Pentágono, intentando blindar y controlar el acontecimiento. - Esto debe descifrarlo un experto. Tenemos un profesor en el Tecnológico de California -comenta el asesor. - ¡Explíqueme esto!. Si la fuente de la señal es tan sofisticada, ¿para qué la clase de aritmética?. -dice el político. - ¡Eso es!, y ¿por qué no hablan nuestra lengua?. -¡Quizá porque el 70% del planeta habla otras lenguas! - interviene Ellie- ¡Matemáticas es el único idioma universal, senador!. No es coincidencia que utilicen números primos. Es una especie de aviso para llamar nuestra atención. Matemáticas y Cine

15 ENIGMA (2001) La trama gira en torno a los intentos de los matemáticos británicos de descifrar el código ENIGMA utilizado por los nazis para encriptar sus transmisiones durante la II Guerra mundial. El protagonista, Jericho, logra descifrar el código mediante el uso de coordenadas y grafos. Escena: 0:6:00 - 0:12:20 - La máquina Enigma. Los alemanes tienen miles de ellas. Convierte mensajes de texto normales en un galimatías, luego ese galimatías se transmite en Morse. El receptor tiene otra máquina enigma que permite entender el mensaje original. Apretando la misma tecla varias veces siempre se obtiene una distinta - dice Jericho. - ¿y usted tiene una?. ¿Cuál es el problema?. - El problema es que la máquina tiene 150 trillones de formas distintas de hacerlo en función de la colocación de estos tres rodillos y estas clavijas. - No he entendido ni una palabra -comenta un miembro de la Inteligencia Militar. Matemáticas y Cine

16 LOS FISGONES (1992) Película de acción protagonizada por un equipo de expertos informáticos y en la que aparece un personaje que da una charla sobre la Teoría de números espectacular y su aplicación en una máquina encriptadora universal diseñada por dicho matemático. Escena: 0:14:00 - 0:15:30 - Se trata de un matemático llamado Gunter Janek, trabaja en una máquina de pensar llamada Instituto Pullish, se especializa en la teoría de los números primos y factorización. - Criptografía -Comenta Martin. - Eso es, precisamente el mes pasado le dieron una beca, dólares, desproporcionada para un tipo como él. Como somos muy curiosos rastreamos el dinero. Adivine su procedencia. - ¿No me diga que de Rusia?. Matemáticas y Cine

17 CUBE (1997) Resolución de un problema donde el conocimiento de la descomposición de un número en factores primos ayuda a los seis protagonistas a sobrevivir en un laberinto de celdas cúbicas con trampas mortales, añadido a un numeroso análisis lógico de números y de situaciones. Escena: 0:18:30 - 0:20:46 - Leaven, ¿qué estudias en la Universidad? ¿Matemáticas? Números primos. ¿Cómo es posible que antes no me diera cuenta?. Por lo visto si alguno de los números es primo, el habitáculo tiene trampas -dice Leaven- ¡Ese habitáculo es seguro!. - ¡Eh, un momento!, ¿cómo puedes suponer que hay trampa basándote en lo de los números primos?. - ¡No lo supongo!. El del incinerador era primo: era 83. El de la química molecular: 137. El del ácido: ¿Recuerdas todo eso de memoria? - - Tengo facilidad para hacerlo. ¡¡¡Cerebro antes que hermosura!!! - grita Leaven - ¡segura!, ¡números primos, números primos!. hasta que entran en uno en el que no son primos pero: ¡¡TIENE TRAMPA!!. La primera conjetura falla. Matemáticas y Cine

18 CUBE 2: HIPERCUBE (2002) Se introduce un concepto revolucionario, ¡¡UN CUBO FORMADO POR CUATRO DIMENSIONES!!: un hipercubo del que los protagonistas tendrán que salir. El laberinto está basado en el mundo complejo siempre cambiante, de la física cuántica: tiempo, realidades alternativas, gravedad son sujetas a cambio y alteraciones que desafían nuestra lógica y razón. Escena: 0:24:50 - 0:27:37 -Tenemos todos los elementos: habitaciones que se repiten, habitaciones que se repliegan sobre sí mismas, teletransporte, todo podría encajar muy bien. Llamemos a una dimensión, longitud. Dos dimensiones son longitud y anchura. Si damos una dimensión más, tenemos un cubo, que tiene 3 dimensiones, longitud, anchura y profundidad. -¡Ahora viene lo realmente curioso!, si tomamos ese cubo y le añadimos una dimensión, obtenemos... - ¡Un teseracto! - dice Kate. - ¿No se consideraba el tiempo la cuarta dimensión?.- comenta el informático - Pues no, es que el hipercubo no es real, es sólo un concepto teórico. Matemáticas y Cine

19 CUBE ZERO (2004) Cube Zero cierra la trilogía de la serie "Cube" y viene a ser el inicio que, además de meternos dentro de ese laberinto, se responde, en parte, a varias de las cuestiones sin respuesta que sugerían un excelente misterio: ¿quién ha construido todo y les mete allí? ¿por qué? ¿cuál es el objetivo?. La salida será a través de las Matemáticas y los sistemas de ejes en el espacio. Escena: 0:30:31 - 0:32:35 - Ésta es SDF. ¡Un momento!. No sé si significa algo, pero en ésta no hay puntos, hay comas. - Es verdad, son comas. -¿Qué más da que sean comas si aún no sabemos que significan las letras?. - Si fueran números entendería lo de las comas. - ¿Y por qué lo entenderías? - ¿No se marcan así las coordenadas en un gráfico: coordenada x, coma, coordenada y, coma, coordenada z?. - ¡Claro, si las salas se identificaran con números, como (10, 1, 7), quizá podríamos saber su posición!. - Sí, pero son letras, de modo que no tenemos absolutamente nada.

20 EL PEQUEÑO TATE (1991) Un niño retraído y con problemas de comunicación es un genio para las Matemáticas, del cálculo mental, del arte... con sólo siete años, ante la incomprensión de los otros niños de su edad. Escena: 0:29:58 - 0:35:42 En la XIII Odisea Anual de la Mente numerosas preguntas son realizadas en los abundantes concursos. Damon Wells responde a todas sin bacilar. - ¿Cuántos divisores hay de 3067? - Venga tíos, no hay divisores de 3067, es un número primo.- responde Damon - ¡Por el amor de Dios, que alguien me desafíe de alguna vez! No podríais. -Está bien, ¿podríais decirme un número que al dividirlo por el producto de sus dígitos de tres de cociente y que si le añadierais 18 a ese número, los dígitos quedarían invertidos?. Tate se adelanta a todos y dice la solución correcta. No la vamos a desvelar para que la podáis averiguar vosotros, aunque me imagino que tardaréis un poco más.

21 EL INDOMABLE WILL HUNTING (1997) Un joven superdotado, genio de las Matemáticas, criado en un ambiente marginal, es detenido por la policía. Su única opción para no ir a la cárcel es acudir a clases de Matemáticas y a sesiones de terapia. Escena: 0:51:33 - 0:46:45 Se trata de una escena significativa en la que Lambeau se encuentra con un colaborador, un profesor que lleva trabajando acerca de una teoría: - Conocemos tu teoría, Alexander, pero el chico ha encontrado una demostración geométrica -dice Lambeau. - Un estructura de árbol no funciona -contesta el investigador. - Lo consigue uniendo los 2 vértices. - Pero yo puedo calcular la suma. - Depende de cómo agrupes los términos, Alexander... - Pero Jerry, si lo hacemos como dice este chico, entonces... - Mire, mire... por escrito, así es más sencillo - comenta Will - ¡Ha sido un golpe de suerte!. ¡Usted es brillante! - mientras se aleja desconsolado. Aquello que le ha llevado largo tiempo, un simple muchacho lo resuelve en un momento.

22 CORTINA RASGADA (1966) Película de espionaje científico en plena guerra fría: la ciencia se mezcla con la política, con una escena que, con toda seguridad, podría ser la más larga del cine en la que los protagonistas están haciendo Matemáticas en el campo de batalla de las pizarras. Escena: 1:18:40 - 1:24:22 - De acuerdo, empecemos -y Armstrong empieza a escribir hasta que Lindt le quita la tiza diciendo… - Permítame, no creo que pueda trabajar conmigo si es esto todo lo que sabe, profesor. Me está decepcionando usted. -¡Aún no he terminado!. - ¡Me parece profesor que tiene poco que ofrecer! -Insiste Lindt. - Profesor, he venido aquí porque quienes manejan los fondos de mi país no son lo bastante inteligentes para adoptar un concepto original. ¡Ahora está bien!. – mientras escribe. -¡Estallará! -mientras Lindt modifica algunos coeficientes de la fórmula escrita por Armstrong. - Al final Lindt se da cuenta que realmente Armstrong no le ha dicho nada.

23 EL ENIGMA DE KASPAR HAUSER (1974) Analizamos una escena en la que se enfrenta la lógica académica y formalista de un profesor y la lógica natural y directa de Kaspar Hauser, un hombre criado en cautividad, que se ha mantenido en total aislamiento toda su vida, viviendo en una especie de sótano, sin utilizar el lenguaje verbal ni conectarse con el prójimo. Escena: 1:14:02 - 1:18:33 Profesor: Kaspar, pongamos que esto es un pueblo. En el pueblo vive gente que sólo dice la verdad. Aquí hay otro pueblo. Su gente sólo dice mentiras. Hay dos caminos que van de estos pueblos al sitio en que te encuentras y tú estás en el cruce. Se acerca un hombre y quieres saber de qué pueblo procede; del pueblo de los honestos o del pueblo de los mentirosos. Ahora, para poder resolver este problema sólo puedes hacer una pregunta y sólo una. ¿Cuál es esa pregunta?. Profesor: Kaspar, si no puedes pensar en la pregunta yo te la diré. Es ésta: Si tú vinieras del otro pueblo, ¿responderías "no" si yo te preguntara si vienes del pueblo de los mentirosos? Aplicando una doble negación, el mentiroso se ve forzado a decir la verdad. Esta construcción le obliga a revelar su identidad, ya ves. Esto es lo que yo llamo argumento lógico para descubrir la verdad. Kaspar: Bueno, sé otra pregunta. Kaspar: Le preguntaría a ese hombre si era una rana. El hombre del pueblo de los honestos diría: "No, no soy una rana", porque dice la verdad. El hombre del pueblo de los mentirosos diría: "Sí, soy una rana", porque me está mintiendo. Así sabría de dónde procede.

24 DONALD EN EL PAÍS DE LAS MATEMÁGICAS (1959) El Pato Donald es un explorador en el misterioso País de las Matemágicas, donde el Espíritu de las Matemáticas poco a poco le irá revelando sus secretos. Se abordan estos temas: Pitágoras y la música, el rectángulo de oro, el número de oro, el pentágono regular en la naturaleza, las matemáticas en los juegos y las cónicas. Escena: 0:22:20 - 0:27:43 - ¿Qué pasa aquí, estas puertas no se abren? -dice Donald. - están con llave. - ¡Claro, están con llave porque son las puertas del futuro y ¿la llave que las abrirá será...? - ¡Las Matemáticas!. -E-Exacto, las Matemáticas, los incontables tesoros de las Ciencias están guardados tras esas puertas, a su tiempo serán abiertas por las mentes estudiosas de futuras generaciones. Según las palabras de Galileo.... -"-"Las Matemáticas son el alfabeto con el que Dios ha escrito el Universo"

25 LOS SIMPSONS Contiene abundantes referencias al mundo de las Matemáticas, no en vano varios de sus guionistas son licenciados en Matemáticas. Cuando acuden a una representación y al entrevistar a la estrella del espectáculo, el director hace referencia al pasado de la diva y a su lugar de graduación en Springfield: - Siempre tuviste excelentes calificaciones. - Bueno, no tanto en Matemáticas. - Es lógico, eres mujer - ante la sorpresa general del público tras tamaña afirmación - sólo quise decir que por lo que he visto los niños son mejores en Matemáticas, ciencias, materias de verdad...- intentando arreglarlo- listo, doy por terminado el tema.

26 NUMB3RS (2006) Usamos los números todos los días, para predecir el tiempo, para decir la hora, al usar dinero. También los usamos para analizar el crimen, para buscar pautas, para predecir comportamientos. Con los números podemos resolver los mayores misterios que se nos plantean. En América su capítulo piloto fue el más visto del año 2005 con 25 millones de espectadores. La cadena CBS tras el éxito de las sagas de CSI, intenta cambiar la medicina forense por las Matemáticas, manteniendo el entorno y las tramas, consiguiendo una media cercana a los 12 millones de espectadores. No profundiza en temas matemáticos, sino que los deja "caer", dando el fundamento científico y utilizando en muchas ocasiones hábiles comparaciones que permiten al espectador entender lo que se hace, buscando siempre el dinamismo de una serie de acción... mientras pasan por la pantalla numerosos gráficos matemáticos, fórmulas, etc., que de manera subliminal inculquen en el espectador la idea de exactitud y "magia".

27 GATTACA (1997) La información genética no da una certeza total, sino una ley de probabilidades, con su nivel de confianza. A lo largo de la película se utilizan ciertos recursos geométricos, espirales, etc. Escena: 0:08:40 - 0:12:16 - Fui concedido en el Riviera, modelo fabricado en Detroit. Solían decir que un niño concebido por amor tenía una mayor probabilidad de ser feliz. Ahora ya nadie lo dice. Nunca entenderé qué fue lo que empujó a mi madre a poner su fe en manos de Dios en vez de las de su genetista. Diez dedos en las manos y diez en los pies, eso era lo único que importaba antes. Ya no, ahora, a los pocos segundos de vida ya se podía saber el tiempo exacto y la causa de mi muerte - comenta el protagonista con voz en off. - Lesión neurológica: 60% de probabilidad. Depresión maniaca: 40% de probabilidad. Trastornos por falta de concentración: 89%. Trastornos cardiacos: 99%: riesgo de muerte prematura. Esperanza de vida: 30.2 años -vaticina la enfermera. Matemáticas y Cine

28 En Geometría hay muchos tipos de espirales. En primer lugar tenemos las espirales planas, como la de Arquímedes, la logarítmica, etc. En segundo lugar tenemos las espirales tridimensionales. Si al espacio tridimensional le asignamos un sistema de tres coordenadas cartesianas, la espiral más habitual se puede expresar en lo que conocemos como coordenadas paramétricas: (a · cos t, a · sen t, b · t) En esta expresión a es una constante que indicará el radio de la espiral, b es otra constante que indica la separación entre las espiras, y t es el parámetro, es decir, una variable que puede tomar todos los valores reales. Para cada valor real que le demos a t obtenemos un punto de la espiral.

29 Demos la entrada en nuestras vidas como actrices y actores secundarios a Russell Crowe, a Kate Winslett, a Gwyneth Paltrow, a Matt Damon… pero sin olvidarnos en ningún momento de que nosotros, alumnos y profesores, seguimos siendo, no sólo los actores y actrices principales, sino los directores, los guionistas, etc. en un escenario increíble: el aula. Matemáticas y Cine CONCLUSIÓN

30 CONTACTO Matemáticas y Cine Abel Martín IES Pérez de Ayala de Oviedo Marta Martín Sierra Facultad de Matemáticas de la Universidad de Oviedo MATEMÁTICAS Y CINE


Descargar ppt "MATEMÁTICAS Y CINE Marta Martín Sierra Facultad de Matemáticas de la Universidad de Oviedo Abel Martín IES Pérez de Ayala de Oviedo."

Presentaciones similares


Anuncios Google