La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Bibliografía de la Clase4Parte1: Juan de Burgos: Cálculo Infinitesimal en Varias Variables. Capítulo 1, sección 1.1, parágrafo 07. CLASE 4 PARTE 1: INTERIOR,

Presentaciones similares


Presentación del tema: "Bibliografía de la Clase4Parte1: Juan de Burgos: Cálculo Infinitesimal en Varias Variables. Capítulo 1, sección 1.1, parágrafo 07. CLASE 4 PARTE 1: INTERIOR,"— Transcripción de la presentación:

1 Bibliografía de la Clase4Parte1: Juan de Burgos: Cálculo Infinitesimal en Varias Variables. Capítulo 1, sección 1.1, parágrafo 07. CLASE 4 PARTE 1: INTERIOR, EXTERIOR, FRONTERA Y CLAUSURA Cálculo Diferencial e Integral II. Eleonora Catsigeras. IMERL. Fac. de Ingeniería. UdelaR. J. Herrera y Reissig 565. Montevideo. Uruguay. Agosto Derechos reservados. Ejercicios para la Clase4Parte1: Práctico 1 del año 2006, ejercicioS 5 a 10

2 DEFINICIONES:: Interior de C Exterior de C Frontera de C Clausura o Adherencia de C OBSERVACIONES:

3 Bibliografía de la Clase4Parte2: Juan de Burgos: Cálculo Infinitesimal en Varias Variables. Capítulo 1, sección 1.1, parágrafo 07. CLASE 4 PARTE 2: ABIERTOS Y CERRADOS Cálculo Diferencial e Integral II. Eleonora Catsigeras. IMERL. Fac. de Ingeniería. UdelaR. J. Herrera y Reissig 565. Montevideo. Uruguay. Agosto Derechos reservados. Ejercicios para la Clase4Parte2: Práctico 1 del año 2006, ejercicioS 5 a 10

4 DEFINICIONES: C es un conjunto ABIERTO si intC=C C es un conjunto CERRADO si =C o lo que es lo mismo si el complemento de C es abierto. Importante: Un conjunto puede no ser abierto ni cerrado. ABIERTO: Si y solo si no contiene a ninguno de sus puntos frontera. CERRADO: Si y solo si contiene a todos sus puntos frontera. NI ABIERTO NI CERRADO: Contiene a algunos pero no todos sus puntos frontera. ABIERTO Y CERRADO A LA VEZ: Su frontera es vacía. Solo son el conjunto vacío o todo Rq.

5 TEOREMA: Sucesiones convergentes en conjuntos cerrados Dem. Por absurdo, si L no perteneciera a C, como C es cerrado L pertenecería al exterior de C. Existe una bola de centro L y radio epsilon >0 que no corta a C. Entonces ningún elemento de pertenece a esa bola. Por lo tanto límite de no es L. Absurdo.

6 Bibliografía de la Clase4Parte3: Juan de Burgos: Cálculo Infinitesimal en Varias Variables. Capítulo 1, sección 1.1, parágrafo 07. CLASE 4 PARTE 3: UNIONES E INTERSECCIONES DE ABIERTOS Y CERRADOS Cálculo Diferencial e Integral II. Eleonora Catsigeras. IMERL. Fac. de Ingeniería. UdelaR. J. Herrera y Reissig 565. Montevideo. Uruguay. Agosto Derechos reservados. Ejercicios para la Clase4Parte3: Práctico 1 del año 2006, ejercicioS 5 a 10

7 TEOREMA 1. La unión (finita o infinita) de conjuntos abiertos es abierta. La intersección finita de conjuntos abiertos es abierta. TEOREMA 2. La intersección (finita o infinita) de conjuntos cerrados es cerrada. La unión finita de conjuntos cerrados es cerrada. Observación: La intersección infinita de conjuntos abiertos puede ser o no ser abierta. En el siguiente ejemplo no es abierta: Observación: La unión infinita de conjuntos cerrados puede ser o no ser cerrada. En el siguiente ejemplo no es cerrada:

8 Dem. Teorema 1. Primera parte: Unión cualquiera de abiertos Dem. Teorema 2. Segunda parte: Intersección finita de abiertos

9 Dem. Teorema 2. Primera parte: Intersección cualquiera de cerrados Dem. Teorema 1. Segunda parte: Unión finita de cerrados

10 Bibliografía de la Clase4Parte4: Juan de Burgos: Cálculo Infinitesimal en Varias Variables. Capítulo 1, sección 1.1, parágrafo 08. CLASE 4 PARTE 4: CONJUNTOS COMPACTOS Cálculo Diferencial e Integral II. Eleonora Catsigeras. IMERL. Fac. de Ingeniería. UdelaR. J. Herrera y Reissig 565. Montevideo. Uruguay. Agosto Derechos reservados. Ejercicios para la Clase4Parte4: Práctico 1 del año 2006, ejercicioS 11 Y 12

11 DEFINICIÓN: Un conjunto de Rq se dice COMPACTO si es CERRADO y ACOTADO. (1) TEOREMA: Sucesiones en compactos de Rq. Toda sucesión de puntos de un compacto contiene alguna subsucesión convergente a un límite que pertenece al compacto. Dem. C compacto C acotado La sucesión tiene una subsucesión convergente a un límite L en Rq. C compacto C cerrado La subsucesión convergente a L es tal que L pertenece a C.

12 CUBRIMIENTO de C: Colección de abiertos cuya unión contiene a C. SUBCUBRIMIENTO de : Otro cubrimiento de C que se obtiene tomando algunos pero no necesariamente todos los abiertos de DEFINICIÓN: Un conjunto de Rq se dice COMPACTO si es CERRADO y ACOTADO. (1) TEOREMA: Cubrimientos de compactos. Si K es compacto entonces todo cubrimiento de K por abiertos contiene algún subcubrimiento finito. Dem. A probar: Por absurdo, suponemos que


Descargar ppt "Bibliografía de la Clase4Parte1: Juan de Burgos: Cálculo Infinitesimal en Varias Variables. Capítulo 1, sección 1.1, parágrafo 07. CLASE 4 PARTE 1: INTERIOR,"

Presentaciones similares


Anuncios Google