ESPAD III * PC 09 MONOMIOS Y POLINOMIOS.

Slides:



Advertisements
Presentaciones similares
Expresiones algebraicas
Advertisements

Operaciones con Polinomios
Polinomios.
Expresiones Algebraicas Expresiones Algebraicas
POLINOMIOS.
POLINOMIOS DEFINICIÓN: es una expresión algebraica cuyas variables están afectadas por exponentes enteros y positivos. Ejemplo: es un polinomio no es.
Monomios y Polinomios.
POLINOMIO "Expresión compuesta de dos o más términos algebraicos unidos por los signos más o menos. Los de dos o tres términos reciben los nombres especiales.
EXPRESIONES FRACCIONARIAS Y RADICALES.
PRIMERAS REGLAS PARA LA TRANSFORMACIÓN DE EXPRESIONES ALGEBRAICAS
Polinomios.
EXPRESIONES ALGEBRÁICAS
Curso de: Matemáticas de Apoyo
Expresiones algebraicas
1. EXPRESIONES ALGEBRÁICAS Y POLINOMIOS. internet
Expresiones Algebraicas
Del lenguaje ordinario al lenguaje algebraico
Recuerda: propiedades de la suma y el producto
REPASO TEMAS DE EXCEL.
EXPRESIONES ALGEBRÁICAS Y POLINOMIOS. internet
Apuntes de Matemáticas 2º ESO
DIVISIÓN DE EXPRESIONES ALGEBRAICAS
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 TEMA 3 EXPRESIONES ALGEBRAICAS.
ÁLGEBRA.
II.- Algebra Básica Expresión algebraica y sus partes.
MULTIPLICACIÓN DE POLINOMIOS
algebra 4 resta de poli Resta de polinomios
ÁLGEBRA.
TRABAJO DE MATEMÁTICAS
DOCENTE: Graciela Castillo MATERIA: Matemática
POLINOMIOS DÍA 09 * 1º BAD CS
DIVISIÓN DE POLINOMIOS
Matemáticas Maestría en Politicas Publicas Dr. Favio Murillo García.
Operaciones Algebraicas
II.-Algebra Básica b).-Operaciones con términos semejantes.
PRODUCTO DE POLINOMIOS
ÁLGEBRA.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 TEMA 4 * 3º ESO Polinomios.
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
Operaciones básicas con polinomios
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 2 ECUACIONES Y SISTEMAS.
POLINOMIOS TEMA 2 * 4º ESO Opc Angel Prieto Benito
3 Polinomios y fracciones algebraicas
POLINOMIOS TEMA 2 * 4º ESO Opc Angel Prieto Benito
@ Angel Prieto BenitoApuntes Matemáticas 2º ESO1 TEMA 5.5 Producto de Polinomios.
Operaciones con polinomios de una variable. Operaciones con polinomios de una variable.
DIVISIÓN DE EXPRESIONES ALGEBRAICAS
INSTITUCION EDUCATIVA LAS FLORES
@ Angel Prieto BenitoApuntes Matemáticas 2º ESO1 TEMA 5.4 Suma de Polinomios.
Operaciones con Expresiones Algebraicas
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 U.D. 3 EXPRESIONES ALGEBRAICAS.
Otras de las propiedades usadas en la división se listan a continuación: 1.Ley de los signos: a)+ entre + da + b)− entre + da − c)+ entre − da − d)− entre.
Apuntes de Matemáticas 1º ESO
@ Angel Prieto BenitoApuntes de Matemáticas 1º ESO1 U.D. 8 * 1º ESO EXPRESIÓN ALGEBRAICA.
@ Angel Prieto BenitoApuntes de Matemáticas 1º ESO1 U.D. 8 * 1º ESO EXPRESIÓN ALGEBRAICA.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 U.D. 4 * 3º ESO E.AC. Polinomios.
ÁLGEBRA ) ÁLGEBRA El lenguaje que utiliza letras en combinación con números y signos, y además las trata como números en operaciones y propiedades,
Álgebra, ecuaciones y sistemas
SUMA y RESTA DE MONOMIOS
© GELV AULA 360 Polinomios 1. Adición de polinomios 2. Sustracción de polinomios 3. Multiplicación de polinomios 4. División de polinomios. Regla de Ruffini.
OPERACIÒNES ALGEBRAICAS.  Una expresión algebraica es un conjunto de cantidades numéricas y literales relacionadas entre sí­ por los signos de las operaciones.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 U. D. 3 * 4º ESO E. AC. POLINOMIOS.
Tema 7 Polinomios. TEMA 5 Suma de Polinomios Aclaración previa a la forma de operar Se puede hacerlo así: P(x) = 5.x x x Q(x) = 3.x x.
FUNDAMENTOS DE MATEMATICAS Una expresión algebraica es una expresión en la que se relacionan valores indeterminados con constantes y cifras, todas ellas.
OPERACIONES ALGEBRAICAS: Expresión algebraica es la forma de las matemáticas que escribimos con letras, números, potencias y signos. Coeficiente 3a2 Grado.
·El lenguaje algebraico ·Expresiones algebraicas.Valor numérico ·Monomios ·Polinomios ·Potencias de polinomios.
SUMA Y RESTA DE MONOMIOS O Para poder sumar y restar monomios tienen que ser semejantes. O Si son semejantes, para sumarlos/restarlos basta con sumar/restar.
Apuntes de Matemáticas 2º ESO
Apuntes de Matemáticas 2º ESO
Transcripción de la presentación:

ESPAD III * PC 09 MONOMIOS Y POLINOMIOS

Suma de monomios La suma ( o diferencia ) de dos monomios semejantes es otro monomio, que tiene como coeficiente la suma ( o diferencia ) de coeficientes y como parte literal la misma que la de los sumandos. Si los monomios no son semejantes, el resultado es un POLINOMIO EJEMPLOS 4.x3 + 7.x3 - 5.x3 = ( 4 + 7 – 5 ).x3 = 6.x3  Monomio 4.x3 + a.x3 - x3 = ( 4 + a – 1 ).x3 = ( 3 + a ).x3  Monomio 4.x3 + 7.x3 - 5.x2 = ( 4 + 7).x3 - 5.x2 = 11.x3 - 5.x2  Polinomio

EJEMPLOS 4.x3 + 5.x3 = (4+5).x3 = 9.x3 3.x2 – 5.x2 = (3 – 5).x2 = – 2 .x2 2.x4 – 7.x4 + 8.x4 = (2 – 7 + 8).x4 = 3.x4 7.x3 + a.x3 = (7 – a).x3 5.x2 + a.x2 + x2 = (5+a+1).x2 = (6+a).x2 Nota importante: Como se ve la suma o resta de monomios semejantes es siempre un monomio, aunque su coeficiente sea mixto.

EJEMPLOS 4.x3 + 5.x = 4.x3 + 5.x 3.x2 – 5.x2 + 4.x = (3 – 5).x2 + 4.x = – 2 .x2 + 4.x 2.x4 – 7.x3 + 8.x4 = (2 + 8).x4 – 7. x3 = 10.x4 – 7.x3 7.x3 + a.x3 + 3.x – 5 = (7 – a).x3 + 3.x – 5 5.x3 + a.x2 + x3 = (5+1).x3 + a.x2 = 6.x3 + a.x2 Nota importante: Como se ve la suma o resta de monomios no semejantes es siempre un polinomio.

Producto de monomios El producto de dos monomios ( semejantes o no ) es otro monomio, que tiene como coeficiente el producto de los coeficientes, como variable la misma y grado la suma de los grados de los monomios factores. EJEMPLO Sea 4.x3 y 5.x2 (4.x3 ). (5.x2 ) = 4.5. x3+2 = 20.x5 Sea 7.x3 y 5.a.x3 (7.x3 ). (5.a.x3 ) = 7.5.a. x3+3 = 35.a.x6

PRODUCTO DE UN MONOMIO POR UN POLINOMIO El producto de un monomio por un polinomio es el que resulte de multiplicar dicho monomio por todos y cada uno de los monomios del polinomio, reduciendo finalmente términos semejantes. EJEMPLO Sea el monomio 4.x3 y P(x) = 5.x4 + 4.x3 - 2.x (4.x3).P(x) = ( 4.x3 ).(5.x4 + 4.x3 - 2.x ) = = ( 4.x3 ).(5.x4 ) + ( 4.x3 ).(4.x3 ) + ( 4.x3 ).( - 2.x ) = = 20.x7 + 16.x6 - 8.x4

OTRO EJEMPLO Sea el monomio 4.x P(x) = 5.x2 + 4.x – 2 (4.x).P(x) = ( 4.x). (5.x2 + 4.x – 2) = = (4.x).(5.x2 ) + (4.x).( 4.x ) + (4.x).(– 2) = = 20.x3 + 16.x2 - 8. x UN EJEMPLO MÁS Sea el monomio 4.a.x P(x) = 5.a.x2 + 4.a2.x (4.a.x).P(x) = ( 4.a.x). (5.a.x2 + 4.a2.x) = = (4.a.x).(5.a.x2 ) + (4.a.x).( 4.a2.x ) = 20.a2.x3 + 16.a2.x2

División de monomios La división de dos monomios ( semejantes o no ) es otro monomio, que tiene como coeficiente la división de los coeficientes, como variable la misma y grado la diferencia de los grados de dividendo y divisor. EJEMPLO Sea 20.x5 y 5.x2 (20.x5 ) : (5.x2 ) = (20/5). x 5 – 2 = 4.x3 Sea 2.x3 y 5.x (2.x3 ) : (5.x ) = (2/5). x 3 – 1 = 0,4.x2

COCIENTE DE MONOMIOS EJEMPLO Sea 4.x3 y 5.x2 El cociente de dos monomios ( semejantes o no ) es otro monomio, que tiene como coeficiente la división de los coeficientes, como variable la misma y grado la diferencia de los grados de los monomios factores. EJEMPLO Sea 4.x3 y 5.x2 (4.x3 ) / (5.x2 ) = (4/5). x3 – 2 = 0,8.x Sea 14.x5 y 7.a.x3 (14.x5 )/ (7.a.x3 ) = (14/7.a). x5 – 3 = (2/a).x2

Potencia de monomios La potencia de un monomio es otro monomio, que tiene como coeficiente la potencia del coeficiente de la base, como variable la misma y grado el producto de las potencias. EJEMPLO 1 Sea (4.x3)2 (4.x3)2 = (4)2. (x3)2 = 16. x3.2 = 16.x6 EJEMPLO 2 Sea [ 3 . ( x 5) 2 ] 3 [ 3 . ( x 5) 2 ] 3 = 33 . ( x 5x2) 3 = 33 . x 5x2x3 = 27 . x 30

EJEMPLO 3 Sea [(1/2 ).x2 ]3 (1/2)3. (x2 )3 = (1/8). x2.3 = (1/8).x6 EJEMPLO 4 Sea (2.x4 )5 (2)5. (x4)5 = 32.x4.5 = 32.x20 EJEMPLO 5 Sea (2.x3 .y)4 (2)4. (x3)4 .y4 = 16.x3.4 .y4 = 16.x12.y4

VALOR NUMÉRICO El valor numérico de una expresión algebraica es el valor que se obtiene al sustituir la variable en la expresión algebraica por un número y realizar las operaciones. EJEMPLOS Hallar el valor numérico de: 4.x3 , para x = 2  4. 23 = 4.8 = 32 3.x2 – 4 , para x = (– 1)  3.(– 1)2 – 4 = 3.1 – 4 = 3 – 4 = – 1 2.x3 – 3.x , para x = 4  2.43 – 3.4 = 2.64 – 12 = 128 – 12 = 116 7 + 5.x – x2 , para x = 5  7 + 5.5 – 52 = 7 + 25 – 25 = 7 x3 – 3.x2 – 2.x + 7 , para x = – 2  (– 2)3 – 3.(– 2)2 – 2.(– 2) + 7 = = – 8 – 3.4 + 4 + 7 = – 8 – 12 + 4 + 7 = 11 – 20 = – 9

Suma de Polinomios

Aclaración previa a la forma de operar Se puede hacerlo así: P(x) = 5.x4 + 4.x3 - 2.x Q(x) = 3.x3 + 5.x - 3 P(x) + Q(x) = 5.x4 + 7.x3 + 3.x – 3 Pero es recomendable hacerlo así: (5.x4 + 4.x3 - 2.x) + (3.x3 + 5.x - 3) = 5.x4 + 4.x3 - 2.x + 3.x3 + 5.x - 3 = = 5.x4 + 7.x3 + 3.x – 3

SUMA DE POLINOMIOS La suma de dos polinomios es otro polinomio, que se obtiene sumando primero los términos semejantes de ambos, y a continuación los no semejantes. La operación de sumar los términos semejantes, expresando el resultado como un único término se llama REDUCIR TÉRMINOS SEMEJANTES. EJEMPLO Sea P(x) = 4.x3 + 7.x2 - 5.x y Q(x) = 7.x3 + 5.x2 - 3 P(x) + Q(x) = ( 4.x3 + 7.x2 - 5.x ) + (7.x3 + 5.x2 – 3 ) = = 4.x3 + 7.x2 - 5.x + 7.x3 + 5.x2 - 3 = = 11.x3 + 12.x2 - 5.x - 3

DIFERENCIA DE POLINOMIOS Para restar un polinomio a otro se suma al polinomio minuendo el opuesto al sustraendo. Para ello se cambia de signo todos los monomios que forman el sustraendo. EJEMPLO Sea P(x) = 4.x3 + 7.x2 - 5.x y Q(x) = 7.x3 + 5.x2 - 3 P(x) - Q(x) = ( 4.x3 + 7.x2 - 5.x ) - (7.x3 + 5.x2 – 3 ) = = 4.x3 + 7.x2 - 5.x - 7.x3 - 5.x2 + 3 = = - 3.x3 + 2.x2 - 5.x + 3