@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS1 MATEMÁTICAS A. CS I TEMA 4.X PROBLEMAS DE GAUSS.

Slides:



Advertisements
Presentaciones similares
Profesor: Ing. Juan Bosco Higuera López
Advertisements

TEMA 1 Sistemas de ecuaciones lineales
Apuntes de Matemáticas 3º ESO
Matemáticas Acceso a CFGS
Matemáticas 2º Bachillerato C.S.
Matemáticas 2º Bachillerato CS
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II TEMA 1 Sistemas de ecuaciones lineales.
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 EJERCICIOS SOBRE EL MÉTODO DE GAUSS Bloque I * Tema 020.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.T.1 EJERCICIOS TEMA 1.7 * 2º BCT.
Tema III Determinantes
Apuntes de Matemáticas 2º ESO
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema IV Discusión de sistemas.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 1 NÚMEROS REALES.
LICEO “TAJAMAR” PROVIDENCIA Depto. Matemática
Apuntes de Matemáticas 3º ESO
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 VALOR DE UN DETERMINANTE ( y II ) Bloque I * Tema 031.
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II TEMA 1 Sistemas de ecuaciones lineales.
INECUACIONES Y SISTEMAS
Matemáticas Aplicadas CS I
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 Tema 2 ECUACIONES Y SISTEMAS.
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
REPARTOS PROPORCIONALES
Áreas y perímetros de cuadriláteros
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II TEMA 1 Sistemas de ecuaciones lineales.
APLICACIONES DE LAS DERIVADAS
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 SUCESIONES Tema 7 * 3º ESO.
INECUACIONES Tema 4 * 4º ESO Opc Angel Prieto Benito
Tema V Programación Lineal
Apuntes de Matemáticas 2º ESO
MATEMÁTICA FINANCIERA
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 MATRICES Y GRAFOS Bloque I * Tema 027.
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 DISTRIBUCIÓN NORMAL MATEMÁTICAS A. CS II Tema 13.
PROBLEMAS CON NÚMEROS NATURALES
Apuntes Matemáticas 2º ESO
Matemáticas Acceso a CFGS
INECUACIONES Y SISTEMAS
@ Angel Prieto BenitoApuntes de Matemáticas 2º ESO1 Tema 3.3 OPERACIONES CON FRACCIONES.
SISTEMAS DE ECUACIONES
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 Tema 1 NÚMEROS REALES.
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 Tema 10 * 1º ESO Ecuaciones de 1º grado.
TEMA 1 Sistemas de ecuaciones lineales
@ Angel Prieto BenitoMatemáticas 4º ESO Opc B1 Tema 4 * 4º ESO Opc B INECUACIONES.
Apuntes Matemáticas 2º ESO
Ecuaciones cuadráticas
PROBLEMAS DE ECUACIONES
Apuntes Matemáticas 1º ESO
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 TEMA 4 ECUACIONES Y SISTEMAS.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 Tema 1 NÚMEROS REALES.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 GEOMETRÍA PLANA TEMA 8 * 3º ESO.
Apuntes Matemáticas 2º ESO
ECUACIONES Y SISTEMAS Tema 3 * 4º ESO Opc Angel Prieto Benito
Matemáticas 1º Bachillerato CT
Matemáticas 4º ESO Opción B
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 NÚMEROS RACIONALES Tema 1 * 3º ESO.
SUMA Y RESTA DE NÚMEROS ENTEROS
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema II Matrices.
Matemáticas Aplicadas CS I
Apuntes de Matemáticas 1º ESO
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 U.D. 6 * 1º ESO FRACCIONES.
Apuntes de Matemáticas 1º ESO
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 U.D. 5 * 3º ESO E.AC. Ecuaciones.
@ Angel Prieto BenitoApuntes de Matemáticas 1º ESO1 U.D. 9 * 1º ESO ECUACIONES.
@ Angel Prieto BenitoApuntes de Matemáticas 1º ESO1 U.D. 9 * 1º ESO ECUACIONES.
Del lenguaje ordinario al lenguaje algebraico
@ Angel Prieto BenitoMatemáticas 2º Bach. Sociales1 U.D. 4 * 2º BCS INECUACIONES.
Identifica cuáles de las siguientes expresiones son polinomios y cuáles no. solución.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 U. D. 6 * 4º ESO E. AC. INECUACIONES.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 U. D. 5 * 4º ESO E. AC. SISTEMAS.
Matemáticas 1º Bachillerato CT
Transcripción de la presentación:

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS1 MATEMÁTICAS A. CS I TEMA 4.X PROBLEMAS DE GAUSS

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS2 PROBLEMA_1 Miriam ha realizado tres controles de matemáticas y la nota media de los tres ha sido 8,5. Si la nota media de los dos primeros es 8, y la nota media de los dos últimos es 9, halla la calificación de cada uno de los controles. Resolución Sea x = Calificación del primer control. Sea y = Calificación del segundo control. Sea z = Calificación del tercer control. Por la lectura detenida del enunciado: (x + y + z) / 3 = 8,5 (x + y) / 2 = 8 (y + z) / 2 = 9

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS3 PROBLEMA_1 Pasando los denominadores, tenemos el sistema: x + y + z = 25,5 x + y = 16 y + z = 18 Operando mediante Gauss: F2 – F1 x + y + z = 25,5 – z = – 9,5 y + z = 18 Permutando F2 con F3 y resolviendo: z = 9,5 en el tercer control. y + 9,5 = 18  y = 8,5 en el tercer control. x + 8,5 + 9,5 = 25,5  x = 25,5 – 18 = 7,5 en el primer control.

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS4 PROBLEMA_2 En 3º ESO hay tres grupos de alumnos, A, B y C. Entre los tres suman un total de 80 alumnos. En A hay un alumno más que en B. En una determinada actividad se les suman a cada grupo 22 alumnos, resultando entonces que los alumnos del grupo B son el doble que los del grupo C. ¿Cuántos alumnos había inicialmente en cada grupo?. Resolución Sea x = Número de alumnos inicialmente en el grupo A Sea y = Número de alumnos inicialmente en el grupo B Sea z = Número de alumnos inicialmente en el grupo C Por la lectura detenida del enunciado: x + y + z = 80 x = y + 1 y + 22 = 2.(z + 22) Resultando el siguiente sistema a resolver: x + y + z = 80 x – y = 1 y – 2.z = 22

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS5 PROBLEMA_2 Teníamos el sistema: x + y + z = 80 x – y = 1 y – 2.z = 22 Operando mediante Gauss: F2 – F1 x + y + z = 80 – 2y – z = – 79 y – 2.z = 22 F2 + 2.F1 x + y + z = 80 – 5.z = – 35 y – 2.z = 22 Permutando F2 con F3 y resolviendo: z = 35 / 5 = 7 alumnos en el grupo 3ºC y – 2.7 = 22  y = = 36 alumnos en el grupo 3ºB x = 80  x = 80 – 36 – 7 = 37 alumnos en el grupo 3ºA

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS6 Cristina sale de compras con 60 €. Si adquiere unos calcetines, el pantalón y la camiseta deportivas, dejaría en la tienda una deuda de 2 €; si se llevase los calcetines y el pantalón la sobrarían 29 €; y si comprara el pantalón y la camiseta la sobraría 1 €. Halla lo que cuesta cada prenda. Resolución Sea x = Lo que cuestan los calcetines. Sea y = Lo que cuesta el pantalón. Sea z = Lo que cuesta la camiseta. Por la lectura detenida del enunciado: x + y + z = x + y = 60 – 29 y + z = 60 – 1 Resultando el siguiente sistema a resolver: x + y + z = 62 x + y = 31 y + z = 59 PROBLEMA_3

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS7 Teníamos el sistema: x + y + z = 62 x + y = 31 y + z = 59 Operando mediante Gauss: F2 – F1 x + y + z = 62 – z = – 31 y + z = 59 Cambiando de signo a F2 e invirtiendo las filas F2 y F3 x + y + z = 62 y + z = 59 z = 31 Resolviendo: z = 31 € cuesta la camiseta. y + 31 = 59  y = 59 – 31 = 28 € cuesta el pantalón. x = 62  x = 62 – 28 – 31 = 3 € cuestan los calcetines. PROBLEMA_3

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS8 En un triángulo sabemos que su perímetro es de 24 cm. El menor de los lados mide el triple de la diferencia de los otros dos. El lado mayor es cuatro unidades más pequeño que la suma de los otros dos. ¿Cuánto mide cada lado? Resolución Sea x = Lo que mide el lado mayor. Sea y = Lo que mide el lado de valor intermedio. Sea z = Lo que mide el lado más pequeño. Por la lectura detenida del enunciado: x + y + z = 24 z = 3.( x – y) x = (y + z) – 4 Resultando el siguiente sistema a resolver: x + y + z = 24 3.x – 3.y – z = 0 x – y – z = – 4 PROBLEMA_4 x y z

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS9 Teníamos el sistema: x + y + z = 24 3.x – 3.y – z = 0 x – y – z = – 4 Operando mediante Gauss: F2 – 3.F1 y F3 – F1 x + y + z = 24 – 6.y – 4.z = – 72 – 2.y – 2.z = – 28 Efectuando F2 / (– 6) y F3 / (– 2) x + y + z = 24 y + (2/3) z = 12 y + z = 14 Efectuando F3 – F2: x + y + z = 24 y + (2/3) z = 12 (1/3).z = 2 PROBLEMA_4 Resolviendo: z = 3.2 = 6 cm mide el lado menor. y + (2/3).6 = 12   y = 12 – 4 = 8 cm el otro lado. x = 24   x = 24 – 8 – 4 = 12 cm mide el lado mayor. El resultado es correcto, pues el lado mayor, 12, debe ser más pequeño que la suma de los otros dos lados, 6+8 = 14, para que efectivamente haya un triángulo.

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS10 Entre Ana, Bea y Carlos tienen 17 €. Carlos tiene 6 € menos que Ana; y Ana tiene 4 € más que Bea. ¿Qué dinero tiene cada uno?. Resolución Sea x = Cantidad que tiene Ana. Sea y = Cantidad que tiene Bea. Sea z = Cantidad que tiene Carlos. Por la lectura detenida del enunciado: x + y + z = 17 z = x – 6 x = y + 4 Obtenemos el sistema: x + y + z = 17 – x + z = – 6 x – y = 4 PROBLEMA_5

@ Angel Prieto BenitoMatemáticas 1º Bachillerato CS11 Normalizando el sistema obtenido: x + y + z = 17 – x + z = – 6 x – y = 4 Aplicando el método de Gauss: F2 + F1, F3 – F1 x + y + z = 17 + y + 2.z = 11 – 2.y – z = – 13 F3 + 2.F2 x + y + z = 17 + y + 2.z = 11 3.z = 9 PROBLEMA_5 Resolviendo: z = 9 / 3 = 3 € y = 11 y = 11 – 6 = 5 € x = 17 x = 17 – 5 – 3 = 9 €