Apuntes de Matemáticas 3º ESO

Slides:



Advertisements
Presentaciones similares
MATEMÁTICAS II MEDIO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC
Advertisements

MATEMÁTICAS II MEDIO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC
Proporcionalidad 1. Magnitudes y medida 2. Razón y proporción
Unidad 3: PROPORCIONALIDAD.
OPERACIONES CON ÁNGULOS
ESTABLECIENDO RELACIONES DE PROPORCIONALIDAD
RAZÓN - ESCALA.
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 2º ESO
REPARTOS PROPORCIONALES
Matemática básica para Comunicadores
Proporcionalidad en el cuerpo humano
Tema 6: Proporcionalidad
PROPORCIONALIDAD DIRECTA
Proporcionalidad 1. Magnitudes directamente porporcionales
PROPORCIONALIDAD INVERSA
Formas de expresar una función
Walda Flores Nikole Jadrijevic María Paz Silva. En la siguiente presentación usted podrá apreciar lo que son las Proporciones, Razones y los Porcentajes,
Razón entre dos números
¿Qué tienen en común estas figuras? ¿Qué podríamos decir de ellas?
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 2º ESO
Apuntes de Matemáticas 2º ESO
PROPORCIONALIDAD INVERSA Tema 2 Tercer trimestre
PROPORCIONALIDAD 2º ESO
Razón y Proporción Curso: 7° Básico Colegio San Nicolás
Apuntes Matemáticas 2º ESO
RAZONES Y PROPORCIONES
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 1º ESO
Apuntes de Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
PROPORCIONALIDAD..
TEMA 5.4 * 1º ESO EQUIVALENCIA DE FRACCIONES
@ Angel Prieto BenitoApuntes Matemáticas 2º ESO1 Tema 8.3 Formas de una función.
Proporcionalidad Numérica
Regla de tres simples.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 NÚMEROS RACIONALES Tema 1 * 3º ESO.
RAZÓN : Es la comparación por cociente de dos números donde el primero se llama antecedente y el segundo consecuente. 2 5 antecedente 2 : 5 dos es a.
Apuntes Matemáticas 2º ESO
Departamento de Ciencias
Aplicar la proporción en la resolución de problemas.
RAZONES Y PROPORCIONES
Apuntes Matemáticas 1º ESO
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 PROPORCIONALIDAD U.D. 7 * 1º ESO.
Apuntes Matemáticas 1º ESO
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 PROPORCIONALIDAD U.D. 7 * 1º ESO.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 PROPORCIONALIDAD U.D. 4 * 3º ESO E.Ap.
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 PROPORCIONALIDAD U.D. 4 * 3º ESO E.Ap.
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 PROPORCIONALIDAD U.D. 7 * 1º ESO.
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 U.D. 13 * 1º ESO FUNCIÓN LINEAL x
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 PROPORCIONALIDAD U.D. 4 * 3º ESO E.Ap.
Apuntes Matemáticas 1º ESO
@ Angel Prieto BenitoApuntes Matemáticas 1º ESO1 PROPORCIONALIDAD U.D. 7 * 1º ESO.
Unidad III PROPORCIONES Nivelación de Matemática.
Entendida de manera genérica, como la comparación entre una parte y otra parte.
Tema 8 - Proporcionalidad
RAZONES PROPORCIONES PORCENTAJES Presentación realizada por Roberto Muñoz Villagrán ramv. RAMV.1.
Razón y proporción numérica
5ta U.A “Sobre semejanza de triángulos y áreas de regiones poligonales RECORDANDO PROPORCIONALIDAD Cuestiones preliminares Resp. Prof. Carlos Enrique Navarro.
Apuntes de Matemáticas 3º ESO
PROPORCIONALIDAD U. D. 3 * 4º ESO E. Angel Prieto Benito
PROPORCIONALIDAD U. D. 3 * 4º ESO E. Angel Prieto Benito
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
PROPORCIONALIDAD U. D. 3 * 4º ESO E. Angel Prieto Benito
Transcripción de la presentación:

Apuntes de Matemáticas 3º ESO TEMA 3 * 3º ESO PROPORCIONALIDAD @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

PROPORCIONALIDAD INVERSA TEMA 3.2 * 3º ESO PROPORCIONALIDAD INVERSA @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO RAZÓN Una razón es la división entre dos cantidades comparables. Se escribe: a --- y se lee “a es a b” b Al número a se le llama antecedente. Al número b se le llama consecuente. Ejemplo: Una persona lee un libro de 250 páginas en 8 horas. Hallar la razón entre el número de páginas que lee y el tiempo que tarda. 250 ------ = 31,25 8 El resultado, 31,25, es la velocidad de lectura de dicha persona. Lee a razón de 31,25 páginas por hora. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO PROPORCIÓN Una proporción es una igualdad entre dos razones. Se escribe: a c --- = ---- y se lee “a es a b como c es a d” b d PROPIEDAD FUNDAMENTAL En una proporción siempre se cumple: a.d = b.c O sea que el producto de medios (b y c) es igual al producto de extremos (a y d). Ejemplo 2,5 2 ----- = ----  2,5.4 = 5.2  10 = 10 , luego vemos que se cumple. 5 4 @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Proporcionalidad INVERSA Dos magnitudes son directamente proporcionales cuando se cumplen dos condiciones: PRIMERA: Al aumentar una magnitud disminuye la otra. SEGUNDA: En todo momento el producto de esas dos magnitudes debe ser constante, la misma. El producto, k, de esas dos magnitudes se llama constante de proporcionalidad. Magnitud M a  b  c Magnitud N a’  b’  c’ a.a’ = b.b’ = c.c’ = k @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Proporcionalidad INVERSA EJEMPLO 1 Un padre decide repartir 55 € entre sus hijos en función del número de días que han llegado tarde a casa. Magnitud “Paga” 10  20  25 Magnitud “Nº días” 10  5  4 PRIMERA: Al aumentar una magnitud disminuye la otra. 10 > 20 > 25  10 < 5 < 4 SEGUNDA: El producto de esas dos magnitudes debe ser constante, la misma. 10.10 = 20.5 = 25.4 = 100 , como vemos es un valor constante Las dos magnitudes dadas son inversamente proporcionales. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Proporcionalidad INVERSA EJEMPLO 2 Un taxista cobra 60 € por llevar a un grupo de amigos de un pueblo a una discoteca de la capital. ¿Cuánto corresponde pagar a cada uno?. Magnitud “Coste personal” 30  15  10 Magnitud “Nº amigos” 2  4  6 PRIMERA: Al aumentar una magnitud disminuye la otra. 2 > 4 > 6  30 < 15 < 10 SEGUNDA: El producto de esas dos magnitudes debe ser constante, la misma. 30.2 = 15.4 = 10.6 = 60 , como vemos es un valor constante: k = 60 Las dos magnitudes dadas son inversamente proporcionales. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO Contraejemplo CONTRAEJEMPLO Tres alumnos que dedican 10, 15 y 20 horas mensuales a la lectura cometen en un mismo texto escrito 40, 30 y 20 faltas de ortografía respectivamente. Magnitud “Horas” 10  15  20 Magnitud “Faltas” 40  30  20 PRIMERA: Al aumentar una magnitud disminuye la otra. 10 > 15 > 20  40 < 30 < 20 SEGUNDA: El producto de esas dos magnitudes debe ser constante, la misma. 10.40 = 400 ,, 15.30 = 450 ,, 20.20 = 400 Vemos que no es un valor constante. Las dos magnitudes dadas NO son inversamente proporcionales. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Regla de tres simple inversa Si dos magnitudes son inversamente proporcionales, podemos aplicar para la resolución del ejercicio la llamada REGLA DE TRES SIMPLE INVERSA. Ejemplo 1 Un alumno tarda 4 horas en hacer una ruta campestre caminando a 8 km/h. ¿Cuánto tardará si camina a 12 km/h?. 8 km/h  6 horas 12 km/h  x horas Se multiplican en filas y se igualan: 8.6 = 12.x  12.x = 48  x = 48 / 12 = 4 horas La razón de proporcionalidad sería, en este caso: K = 8.6 = 12.4 = 48 En este caso 48 serían los km recorridos, que serían fijos, constantes, con independencia de la velocidad con que camine. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO Ejemplo 2 Si cuatro pintores nos pintas la vivienda en dos día, ¿en cuántos días nos la pintarían 5 pintores?. Suponemos que “Nº de pintores” y “Nº de días” son magnitudes que están en P.I., o sea que el rendimiento de cada pintor es el mismo en uno y otro caso. 4 p  2 días 5 p  x días Se multiplican en cruz y se igualan: 4.2 = 5.x  8 = 5.x  x = 8 / 5 = 1,6 días La razón de proporcionalidad sería, en este caso: K = 4.2 = 5.1,6 = 8 En este caso 8 significaría los días que tardaría un solo pintor. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO Ejemplo 3 En una acampada tres amigos han llevado víveres para estar 10 días sin contacto alguno con la civilización. Pero por el camino se les unen dos turistas que van sin nada. ¿Cuántos días podrán acampar las cinco personas en estas condiciones?. Suponemos que la cantidad de comida por persona y día es siempre la misma. Y por supuesto, a mayor número de personas menos dura la comida. 3 p  10 d 5 p  x d Se multiplican en cruz y se igualan: 3.10 = 5.x  30 = 5.x  x = 30 / 5 = 6 días La razón de proporcionalidad sería, en este caso: K = 3.10 = 5.6 = 30 En este caso 30 significaría los días que sobreviviría una sola persona con la cantidad de víveres llevados. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO