UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA Subarmónicas y Caos en Convertidores de Potencia Controlados en Modo Corriente Sistemas Dinámicos Ing. G. Uicich
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA Subarmónicas y Caos en Convertidores controlados en Modo Corriente Modelo de primer orden de tiempo discreto CONVERTIDOR FORWARD Corriente en el inductor L Sustitución de variables: Señal error Modulador PWM con saturación Sistemas Dinámicos Ing. G. Uicich
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA Problemas con el modelo de Hamill & Jeffries: No considera en<0 (error en modelo de control) Caso a<0 no aplica en control (realimentación positiva) Sistema de tiempo discreto con controlador contínuo No modela control por corriente pico (caso de aplicación) La discontinuidad en la función Dn es irrelevante (ec. Spline) Análisis lineal de Estabilidad por Promediación de Estados: Validez del modelo: w<ws/2 ! Para Q=0.2, k<24.7 => ESTABLE Por simulación, k=9 => oscilatorio no amortiguado Sistemas Dinámicos Ing. G. Uicich
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA Por evaluación, k=9 => oscilatorio no amortiguado k=8=> oscilatorio amortiguado. P=0.44; Q=0.2 Para Q=0.2, k<24.7 => ESTABLE Límite de validez del modelo lineal: w<ws/2 ! Sistemas Dinámicos Ing. G. Uicich
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA Evaluación de la dinámica para: k=50 N=13 Q=0.2 P=0.44 xn+1=xn Sistemas Dinámicos Ing. G. Uicich
Notar la oscilación subarmónica de período 5 UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA Evaluación de la dinámica para: k=50 N=13 Q=0.1 P=0.51 Notar la oscilación subarmónica de período 5 xn+1=xn Sistemas Dinámicos Ing. G. Uicich
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA Modelo del problema: Reagrupando en las variables para la zona lineal: ESTABLE ! BIFURCACIONES Tomando el caso en que k>0 para realimentación negativa y P>0 Ocurren cuando: Diferencias con el Modelo de Hamill & Jeffries: Valores finales de la variable distintos Bandas de oscilación subarmónica menos definidas Similitudes con el modelo de Hamill & Jeffries Bifurcaciones tipo horquilla (pitchfork) Bandas caóticas en k Oscilaciones subarmónicas de período 5 Sistemas Dinámicos Ing. G. Uicich
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA BIFURCACIONES Tomando el caso en que k>0 para realimentación negativa y P>0 Ocurren cuando: Sistemas Dinámicos Ing. G. Uicich
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA SIMULACION CIRCUITAL Oscilación subarmónica Gran error promedio en SS a pesar de k= 50 Saturación en ciclo de trabajo D Sistemas Dinámicos Ing. G. Uicich
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA SIMULACION CIRCUITAL CONTROL POR CORRIENTE PICO Oscilación subarmónica Vi=50V Vo=20V Vi=50V Vo=30V Sistemas Dinámicos Ing. G. Uicich
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA Análisis Geométrico IR mC m1 m2 IL dn.TS dn+1.TS CICLO n CICLO n+1 mC = pendiente compensación En equilibrio: Sustitución: Rearreglando variables: con lo cual: Si dn* es punto fijo: CRITERIO DE ESTABILIDAD DE POINCARE Sistemas Dinámicos Ing. G. Uicich
UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERIA 0<m<1 Convergencia Monótona f(d) d1 CRITERIO DE ESTABILIDAD DE POINCARE f(d) d d0 d* m=0 Dead Beat d d d f(d) f(d) f(d) d d d d0 d* d1 d0 d* d1 d0 d* d1 -1<m<0 Convergencia oscilatoria m=-1 Oscilación de medio período m<-1 Mapa caótico Sistemas Dinámicos Ing. G. Uicich