La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Unidad 1: ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Presentaciones similares


Presentación del tema: "Unidad 1: ECUACIONES DIFERENCIALES DE PRIMER ORDEN"— Transcripción de la presentación:

1 Unidad 1: ECUACIONES DIFERENCIALES DE PRIMER ORDEN
SOLUCIONES EN SERIE DE ECUACIONES LINEALES

2 REPASO DE SERIES DE POTENCIAS

3 Serie de potencias Una serie de potencias es aquella que tiene la forma: en donde x es una variable y los cn son constantes llamadas coeficientes de la serie. De una manera más general, la serie de la forma: se llama serie de potencias en (x-a), o serie de potencias centrada en a.

4 Convergencia Una serie de potencias es convergente en un valor especificado de x si su sucesión de sumas parciales {SN(x)} converge, es decir, existe Si el límite no existe en x, entonces se dice que la serie es divergente.

5 Ejemplo La serie: es una serie de potencias con cn=1 para toda n. Esta serie es una serie geométrica que converge si -1<x<1. El valor de convergencia de la serie es:

6 Intervalo de convergencia
Toda serie de potencias tiene un intervalo de convergencia. El intervalo de convergencia es el conjunto de números reales x para los que converge la serie.

7 Radio de convergencia Toda serie de potencias tiene un radio de convergencia R. Si R>0, entonces la serie de potencias converge para Ix-aI<R y diverge para Ix-aI>R. Si la serie converge sólo en su centro a, entonces R=0. Si la serie converge para toda x, entonces se escribe

8 Convergencia absoluta
Dentro de su intervalo de convergencia, una serie de potencias converge absolutamente. En otras palabras, si x es un número en el intervalo de convergencia y no es un extremo del intervalo, entonces la serie de valores absolutos converge.

9 Prueba de la razón La convergencia de una serie de potencias suele determinarse mediante el criterio de la razón. Suponga que para toda n y que Si L<1, la serie converge absolutamente. Si L>1, la serie diverge y Si L=1, el criterio no es concluyente.

10 Una serie de potencias define una función
Una serie de potencias define una función cuyo dominio es el intervalo de convergencia de la serie. Si el radio de convergencia es R>0, entonces, f es continua, diferenciablee integrable en el intervalo (a-R,a+R). Además f´(x) y se encuentran mediante diferenciación e integración término a término.

11 Una serie de potencias define una función…
La convergencia en un extremo se podría perder por diferenciación o ganar por integración. Si es una serie de potencias en x, entonces las primeras dos derivadas son: Obsérvese que omitiendo los términos que son cero

12 Propiedad de identidad
Si R>0, para los números x en el intervalo de convergencia, entonces Cn=0 para toda n.

13 Analítica en un punto Una función f es analítica en un punto a si se puede representar mediante una serie de potencias en x-a con un radio positivo o infinito de convergencia.

14 Series de Taylor y de Maclaurin
Supongamos que f es cualquier función representable mediante una serie de potencias: Es posible verificar a partir de ello, que:

15 Series de Taylor y de Maclaurin…
Si continuamos derivando y evaluando para x=a, podemos llegar a lo siguiente: Al despejar el valor de cn, el resultado es: Esta fórmula es válida aún para n=0 si adoptamos las convenciones de que 0!=1 y que f(0)=f. De esta manera demostramos el siguiente teorema:

16 Series de Taylor y de Maclaurin…
Si f tiene una representación (desarrollo) en forma de serie de potencias en a, esto es: los coeficientes están expresados por la fórmula:

17 Serie de Taylor

18 Serie de Maclaurin En el caso especial de que a=0, la serie de Taylor se transforma en: Esta serie recibe el nombre de serie de Maclaurin.

19 Problemas: Obtenga la serie de Maclaurin para cada una de las siguientes funciones: f(x) = ex f(x) = Sen(x) f(x) = Cos(x) Nota: Son analíticas en x=0.

20 Aritmética de series de potencias
Las series de potencias se combinan mediante operaciones de suma, multiplicación y división. Los procedimientos para las series de potencias son similares a los que se usan para sumar, multiplicar o dividir dos polinomios, es decir, se suman los coeficientes de potencias iguales de x, se usa la ley distributiva y se reúnen términos semejantes.

21 Problema Escriba como una suma de términos la multiplicación de ex y Senx. Recuerde que:

22 Cambio del índice de suma
Es común simplificar la suma de dos o más series de potencias expresada en una notación de suma (sigma), en una expresión con una sola sumatoria. Su escritura puede requerir una reindización, es decir el cambio del índice de la suma.

23 Problema Reescriba la expresión dada como una sola serie de potencias en cuyo término general aparezca xk.


Descargar ppt "Unidad 1: ECUACIONES DIFERENCIALES DE PRIMER ORDEN"

Presentaciones similares


Anuncios Google