3° Medio Común Unidad: Función cuadrática y Ecuación de segundo grado.

Slides:



Advertisements
Presentaciones similares
Funciones/Funciones Elementales/Polinomios.
Advertisements

Funciones y sus Gráficas.
QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS
CLARITA NESSIM MAPA CONCEPTUAL FUNCIONES MATEMATICAS.
BIENVENIDOS.
RELACIONES Y FUNCIONES “Función cuadrática, ecuación de segundo grado”
UNIDAD 3 FUNCIONES, MATRICES Y DETERMINANTES
Graficar Funciones Cuadráticas
Funciones Presentado por: Tammy Roterman y Orli Glogower
FUNCIONES DE VARIABLE REAL
Funciones.
10 Sesión Contenidos: Función cuadrática.
FUNCIONES.
Situaciones que dan origen a funciones cuadráticas
Puntos de corte con los ejes
Función Cuadrática.
Parábola Es el lugar geométrico de un punto de coordenadas (x,y) que se mueve sobre un plano , de manera que su distancia a un punto fijo llamado foco.
Función Cuadrática y Ecuación de Segundo Grado
FUNCIONES CUADRATICAS
TEMA: ECUACIONES CUADRÁTICAS
La función lineal. Las funciones lineales tienen la forma:
Función cuadrática y Ecuación de segundo grado
Tema: Función Cuadrática
ECUACIONES CUADRÁTICAS
Gráficos de la Función Cuadrática
Funciones Psu Matemáticas 2012.
Función Cuadrática y Ecuación de Segundo Grado
Funciones Cuadráticas.
Función Cuadrática Valores extremos
Formas de representación
FUNCIONES CUADRÁTICAS
Funciones.
FUNCIONES CUADRÁTICAS
FUNCION LINEAL.
Matemática Básica (CC.)
CLASE 48 –3 x x x x y y 2,1 y y 5x5x 5x5x 7 7 x x 2 2 y y 5 5 = 7 x 0 0 ( x  0) 4 x x 3 +2 x x 2 –1 P( x ) =
Ecuaciones cuadráticas
Funciones polinómicas y potencias
@ Angel Prieto BenitoMatemáticas Acceso a CFGS1 FUNCIONES CUADRÁTICAS Bloque III * Tema 103.
Contenidos: APRENDIZAJE ESPERADO
Tipos de Funciones Función lineal.
UNIVERSIDAD ESTATAL DEL VALLE DE ECATEPEC
FUNCIONES.
FUNCIONES LINEÁLES Y CUÁDRATICAS
Modelo matemático de las funciones poli nominales
Bb.
QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS
Sesión 4 Tema: Función cuadrática Objetivo:
Funciones Cuadráticas.
Clase: Ecuación de segundo grado
Matemáticas 3º ESO Colegio Divina Pastora Toledo
Decimos que una función es cuadrática si se puede expresar de la forma
FUNCIONES POLINÓMICAS Y RACIONALES. INTERPOLACIÓN.
INSTITUCION EDUCATIVA LA INMACULADA. TIERRALTA - CORDOBA
Funciones cuadráticas o Funciones de segundo grado
Funciones cuadráticas
@ Angel Prieto BenitoApuntes 1º Bachillerato CT1 FUNCIONES ELEMENTALES U.D. 6 * 1º BCT.
FUNCIÓN CUADRÁTICA Es una función polinómica de 2º grado que viene definida por la expresión: y =ax2 + bx + c donde a, b y c son números cualesquiera.
Funciones Cuadráticas.
Geometría Analítica.
F UNCIONES LICEO VILLA MACUL ACADEMIA DEPTO. DE MATEMÁTICA 4° MEDIO COMÚN PROF. LUCY VERA.
@ Angel Priet Benito Matemáticas Aplicadas CS I 1 Si tenemos una ecuación de la forma y = a.x 3 + b.x 2 + c.x + d, entonces podemos decir que es una función.
12 Sesión Contenidos: Función cuadrática.
 Una ecuación de segundo grado [1] [2] o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo.
3° MEDIO – Matemática Común
Ecuación de Segundo Grado
Funciones Cuadráticas.
Clase Función cuadrática cuadrática. Función cuadrática Definición Es de la forma: f(x) = ax 2 + bx + c Ejemplos: y su representación gráfica corresponde.
2° Medio Unidad: Función cuadrática y Ecuación de segundo grado.
Transcripción de la presentación:

3° Medio Común Unidad: Función cuadrática y Ecuación de segundo grado

1. Función Cuadrática f(x) = ax2 + bx + c con a =0; a,b,c  IR Es de la forma: f(x) = ax2 + bx + c con a =0; a,b,c  IR y su gráfica es una parábola. Ejemplos: a) Si f(x) = 2x2 + 3x + 1  a = 2, b = 3 y c = 1 b) Si f(x) = 4x2 - 5x - 2  a = 4, b = -5 y c = -2

1.1. Intersección con eje Y y c x En la función cuadrática, f(x) = ax2 + bx + c , el coeficiente c indica la ordenada del punto donde la parábola intersecta al eje Y. x y c (0,C)

1.2. Concavidad En la función cuadrática, f(x) = ax2 + bx + c , el coeficiente a indica si la parábola es cóncava hacia arriba o hacia abajo. Si a > 0, es cóncava hacia arriba Si a < 0, es cóncava hacia abajo

Ejemplo: y x En la función f(x) = x2 - 3x - 4 , a = 1 y c = - 4. Luego, la parábola intersecta al eje Y en el punto (0,- 4) y es cóncava hacia arriba. x y (0,-4)

1.3. Eje de simetría y vértice El vértice de una parábola es el punto más alto o más bajo de la curva, según sea su concavidad. El eje de simetría es la recta que pasa por el vértice de la parábola, y es paralela al eje Y. Eje de simetría x y Vértice

-b x = 2a -b , f -b V = 2a -b , 4ac – b2 V = 2a 4a Si f(x) = ax2 + bx + c , entonces: -b 2a x = a) Su eje de simetría es: 2a V = -b , f -b b) Su vértice es: 4a -b , 4ac – b2 2a V =

Ejemplo: -b -2 x = x = x = -1 2a 2·1 -b , f -b V = V = ( -1, f(-1) ) En la función f(x) = x2 + 2x - 8, a = 1, b = 2 y c = - 8, entonces: a) Su eje de simetría es: 2a -b x = 2·1 -2 x =   x = -1 b) Su vértice es: -b , f -b 2a V =  V = ( -1, f(-1) )  V = ( -1, -9 )

Eje de simetría: x = -1 f(x) Vértice: V = ( -1, -9 )

Si la parábola es abierta hacia arriba, el vértice es un mínimo y si la parábola es abierta hacia abajo, el vértice es un máximo.

1.4. Discriminante Δ = b2 - 4ac El discriminante se define como: a) Si el discriminante es positivo, entonces la parábola intersecta en dos puntos al eje X. Δ > 0

b) Si el discriminante es negativo, entonces la parábola NO intersecta al eje X. Δ < 0

c) Si el discriminante es igual a cero, entonces la parábola intersecta en un solo punto al eje X, es tangente a él. Δ = 0

2. Ecuación de segundo grado Una ecuación cuadrática o de segundo grado es de la forma: ax2 + bx + c = 0, con a ≠ 0 Toda ecuación de segundo grado tiene 2 soluciones o raíces. Si éstas son reales, corresponden a los puntos de intersección de la parábola f(x) = ax2 + bx + c con el eje X. x1 x2

Ejemplo: En la función f(x) = x2 - 3x - 4 , la ecuación asociada: x2 - 3x - 4 = 0 , tiene raíces -1 y 4. Luego, la parábola intersecta al eje X en esos puntos. x y x1 x2

2.1. Raíces de una ecuación de 2° grado Fórmula para determinar las soluciones (raíces) de una ecuación de segundo grado: - b ± b2 – 4ac 2a x = Ejemplo: Determinar las raíces de la ecuación: x2 - 3x - 4 = 0 -(-3) ± (-3)2 – 4·1(- 4) 2 x = 3 ± 9 + 16 2 x =

3 ± 25 2 x = 2 x = 3 ± 5 2 x = 8 2 x = -2 x1 = 4 x2 = -1 También se puede obtener las raíces de la ecuación factorizando como producto de binomios: x2 - 3x - 4 = 0 (x - 4)(x + 1) = 0  (x - 4)= 0 ó (x + 1)= 0 x1 = 4 x2 = -1

2.2. Propiedades de las raíces Si x1 y x2 son las raíces de una ecuación de segundo grado de la forma ax2 + bx + c = 0, entonces: -b a x1 + x2 = 1) c a x1 · x2 = 2) Δ a x1 - x2 = ± 3) Dadas las raíces o soluciones de una ecuación de segundo grado, se puede determinar la ecuación asociada a ellas. a(x – x1)(x – x2) = 0

2.3. Discriminante En una ecuación de segundo grado, el discriminante Δ = b2 - 4ac permite conocer la naturaleza de las raíces. a) Si el discriminante es positivo, entonces la ecuación cuadrática tiene dos soluciones reales x1, x2 y distintas. La parábola intersecta en dos puntos al eje X. x1, x2 son reales y x1 ≠ x2 x1 x2 Δ > 0

La parábola NO intersecta al eje X. Si el discriminante es negativo, entonces la ecuación cuadrática no tiene solución real. La parábola NO intersecta al eje X. x1, x2 son complejos y conjugados x1 = x2 Δ < 0

La parábola intersecta en un solo punto al eje X. c) Si el discriminante es igual a cero, entonces la ecuación cuadrática tiene dos raíces reales e iguales. La parábola intersecta en un solo punto al eje X. x1, x2 son reales y x1 = x2 x1= x2 Δ = 0